Core binding factor acute myeloid leukemia: Advances in the heterogeneity of KIT, FLT3, and RAS mutations (Review)
- Authors:
- Xi Quan
- Jianchuan Deng
-
Affiliations: Department of Hematology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, P.R. China - Published online on: May 25, 2020 https://doi.org/10.3892/mco.2020.2052
- Pages: 95-100
This article is mentioned in:
Abstract
Dohner H, Estey E, Grimwade D, Amadori S, Appelbaum FR, Buchner T, Dombret H, Ebert BL, Fenaux P, Larson RA, et al: Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood. 129:424–447. 2017.PubMed/NCBI View Article : Google Scholar | |
O'Donnell MR, Tallman MS, Abboud CN, Altman JK, Appelbaum FR, Arber DA, Bhatt V, Bixby D, Blum W, Coutre SE, et al: Acute myeloid leukemia, version 3.2017, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw. 15:926–957. 2017.PubMed/NCBI View Article : Google Scholar | |
Solh M, Yohe S, Weisdorf D and Ustun C: Core-Binding factor acute myeloid leukemia: Heterogeneity, monitoring, and therapy. Am J Hematol. 89:1121–1131. 2014.PubMed/NCBI View Article : Google Scholar | |
Chen X, Dou H, Wang X, Huang Y, Lu L, Bin J, Su Y, Zou L, Yu J and Bao L: KIT mutations correlate with adverse survival in children with core-binding factor acute myeloid leukemia. Leuk Lymphoma. 59:829–836. 2018.PubMed/NCBI View Article : Google Scholar | |
Marcucci G, Mrózek K, Ruppert AS, Maharry K, Kolitz JE, Moore JO, Mayer RJ, Pettenati MJ, Powell BL, Edwards CG, et al: Prognostic factors and outcome of core binding factor acute myeloid leukemia patients with t(8;21) differ from those of patients with inv (16): A cancer and leukemia group B study. J Clin Oncol. 23:5705–5717. 2005.PubMed/NCBI View Article : Google Scholar | |
Byrd JC, Mrozek K, Dodge RK, Carroll AJ, Edwards CG, Arthur DC, Pettenati MJ, Patil SR, Rao KW, Watson MS, et al: Pretreatment cytogenetic abnormalities are predictive of induction success, cumulative incidence of relapse, and overall survival in adult patients with de novo acute myeloid leukemia: Results from cancer and leukemia group B (CALGB 8461). Blood. 100:4325–4336. 2002.PubMed/NCBI View Article : Google Scholar | |
Duployez N, Boudry-Labis E, Roumier C, Boissel N, Petit A, Geffroy S, Helevaut N, Celli-Lebras K, Terre C, Fenneteau O, et al: SNP-Array lesions in core binding factor acute myeloid leukemia. Oncotarget. 9:6478–6489. 2018.PubMed/NCBI View Article : Google Scholar | |
Roloff GW and Griffiths EA: When to obtain genomic data in acute myeloid leukemia (AML) and which mutations matter. Blood Adv. 2:3070–3080. 2018.PubMed/NCBI View Article : Google Scholar | |
Sinha C, Cunningham LC and Liu PP: Core binding factor acute myeloid leukemia: New prognostic categories and therapeutic opportunities. Semin Hematol. 52:215–222. 2015.PubMed/NCBI View Article : Google Scholar | |
Gang H, Shigesada K, Ito K, Wee HJ, Yokomizo T and Ito Y: Dimerization with PEBP2 protects RUNX1/AML1 from ubiquitin-proteasome-mediated degradation. EMBO J. 20:723–733. 2014.PubMed/NCBI View Article : Google Scholar | |
von Neuhoff C, Reinhardt D, Sander A, Zimmermann M, Bradtke J, Betts DR, Zemanova Z, Stary J, Bourquin JP, Haas OA, et al: Prognostic impact of specific chromosomal aberrations in a large group of pediatric patients with acute myeloid leukemia treated uniformly according to trial AML-BFM 98. J Clin Oncol. 28:2682–2689. 2010.PubMed/NCBI View Article : Google Scholar | |
Speck NA: Core binding factor and its role in normal hematopoietic development. Curr Opin Hematol. 8:192–196. 2001.PubMed/NCBI View Article : Google Scholar | |
Downing JR: The core-binding factor leukemias: Lessons learned from murine models. Curr Opin Genet Dev. 13:48–54. 2003.PubMed/NCBI View Article : Google Scholar | |
Appelbaum FR, Kopecky KJ, Tallman MS, Slovak ML, Gundacker HM, Kim HT, Dewald GW, Kantarjian HM, Pierce SR and Estey EH: The clinical spectrum of adult acute myeloid leukaemia associated with core binding factor translocations. Br J Haematol. 135:165–173. 2010.PubMed/NCBI View Article : Google Scholar | |
Hospital MA, Prebet T, Bertoli S, Thomas X, Tavernier E, Braun T, Pautas C, Perrot A, Lioure B, Rousselot P, et al: Core-Binding factor acute myeloid leukemia in first relapse: A retrospective study from the French AML Intergroup. Blood. 124:1312–1319. 2014.PubMed/NCBI View Article : Google Scholar | |
Paschka P and Dohner K: Core-Binding factor acute myeloid leukemia: Can we improve on HiDAC consolidation? Hematology Am Soc Hematol Educ Program. 2013:209–219. 2013.PubMed/NCBI View Article : Google Scholar | |
Strickland SA, Shaver AC, Byrne M, Daber RD, Ferrell PB, Head DR, Mohan SR, Mosse CA, Moyo TK, Stricker TP, et al: Genotypic and clinical heterogeneity within NCCN favorable-risk acute myeloid leukemia. Leuk Res. 65:67–73. 2018.PubMed/NCBI View Article : Google Scholar | |
Dombret H, Preudhomme C and Boissel N: Core binding factor acute myeloid leukemia (CBF-AML): Is high-dose Ara-C (HDAC) consolidation as effective as you think? Curr Opin Hematol. 16:92–97. 2009.PubMed/NCBI View Article : Google Scholar | |
Shin HJ, Min WS, Min YH, Cheong JW, Lee JH, Kim IH, Hong DS, Ahn JS, Kim HJ, Lee WS, et al: Different prognostic effects of core-binding factor positive AML with Korean AML registry data. Ann Hematol. 98:1135–1147. 2019.PubMed/NCBI View Article : Google Scholar | |
Kawashima N, Akashi A, Nagata Y, Kihara R, Ishikawa Y, Asou N, Ohtake S, Miyawaki S, Sakura T, Ozawa Y, et al: Clinical significance of ASXL2 and ZBTB7A mutations and C-terminally truncated RUNX1-RUNX1T1 expression in AML patients with t(8;21) enrolled in the JALSG AML201 study. Ann Hematol. 98:83–91. 2019.PubMed/NCBI View Article : Google Scholar | |
Faber ZJ, Chen X, Gedman AL, Boggs K, Cheng J, Ma J, Radtke I, Chao JR, Walsh MP, Song G, et al: The genomic landscape of core-binding factor acute myeloid leukemias. Nat Genet. 48:1551–1556. 2016.PubMed/NCBI View Article : Google Scholar | |
Badr P, Elsayed GM, Eldin DN, Riad BY and Hamdy N: Detection of KIT mutations in core binding factor acute myeloid leukemia. Leuk Res Rep. 10:20–25. 2018.PubMed/NCBI View Article : Google Scholar | |
Thiel VN, Giaimo BD, Schwarz P, Soller K, Vas V, Bartkuhn M, Blatte TJ, Dohner K, Bullinger L, Borggrefe T, et al: Heterodimerization of AML1/ETO with CBFβ is required for leukemogenesis but not for myeloproliferation. Leukemia. 31:2491–2502. 2017.PubMed/NCBI View Article : Google Scholar | |
Care RS, Valk PJ, Goodeve AC, Abu-Duhier FM, Geertsma-Kleinekoort WM, Wilson GA, Gari MA, Peake IR, Lowenberg B and Reilly JT: Incidence and prognosis of c-KIT and FLT3 mutations in core binding factor (CBF) acute myeloid leukaemias. Br J Haematol. 121:775–777. 2003.PubMed/NCBI View Article : Google Scholar | |
Kelly LM and Gilliland DG: Genetics of myeloid leukemias. Annu Rev Genom Hum Genet. 3:179–198. 2002.PubMed/NCBI View Article : Google Scholar | |
Boissel N, Leroy H, Brethon B, Philippe N, de Botton S, Auvrignon A, Raffoux E, Leblanc T, Thomas X, Hermine O, et al: Incidence and prognostic impact of c-Kit, FLT3, and ras gene mutations in core binding factor acute myeloid leukemia (CBF-AML). Leukemia. 20:965–970. 2006.PubMed/NCBI View Article : Google Scholar | |
Speck NA and Gilliland DG: Core-binding factors in haematopoiesis and leukaemia. Nat Rev Cancer. 2:502–513. 2002.PubMed/NCBI View Article : Google Scholar | |
Christen F, Hoyer K, Yoshida K, Hou HA, Waldhueter N, Heuser M, Hills RK, Chan W, Hablesreiter R, Blau O, et al: Genomic landscape and clonal evolution of acute myeloid leukemia with t(8;21): An international study on 331 patients. Blood. 133:1140–1151. 2019.PubMed/NCBI View Article : Google Scholar | |
Hartmann L, Dutta S, Opatz S, Vosberg S, Reiter K, Leubolt G, Metzeler KH, Herold T, Bamopoulos SA, Bräundl K, et al: ZBTB7A mutations in acute myeloid leukaemia with t(8;21) translocation. Nat Commun. 2(11733)2016.PubMed/NCBI View Article : Google Scholar | |
Rau RE: Beyond KIT in CBF-AML: Chromatin and cohesin. Blood. 127:2370–2371. 2016.PubMed/NCBI View Article : Google Scholar | |
Narimatsu H, Yokozawa T, Iida H, Tsuzuki M, Hayakawa M, Takeo T, Iino M, Ichihashi T, Kato C, Sawamoto A, et al: Clinical characteristics and outcomes in patients with t(8;21) acute myeloid leukemia in Japan. Leukemia. 22:428–432. 2008.PubMed/NCBI View Article : Google Scholar | |
Jawhar M, Dohner K, Kreil S, Schwaab J, Shoumariyeh K, Meggendorfer M, Span LLF, Fuhrmann S, Naumann N, Horny HP, et al: KIT D816 mutated/CBF-negative acute myeloid leukemia: A poor-risk subtype associated with systemic mastocytosis. Leukemia. 33:1124–1134. 2019.PubMed/NCBI View Article : Google Scholar | |
Duployez N, Marceau-Renaut A, Boissel N, Petit A, Bucci M, Geffroy S, Lapillonne H, Renneville A, Ragu C, Figeac M, et al: Comprehensive mutational profiling of core binding factor acute myeloid leukemia. Blood. 127:2451–2459. 2016.PubMed/NCBI View Article : Google Scholar | |
Lennartsson J, Jelacic T, Linnekin D and Shivakrupa R: Normal and oncogenic forms of the receptor tyrosine kinase kit. Stem Cells. 23:16–43. 2005.PubMed/NCBI View Article : Google Scholar | |
Paschka P, Schlenk RF, Weber D, Benner A, Bullinger L, Heuser M, Gaidzik VI, Thol F, Agrawal M, Teleanu V, et al: Adding dasatinib to intensive treatment in core-binding factor acute myeloid leukemia-results of the AMLSG 11-08 trial. Leukemia. 32:1621–1630. 2018.PubMed/NCBI View Article : Google Scholar | |
Park SH, Chi HS, Min SK, Park BG, Jang S and Park CJ: Prognostic impact of c -KIT mutations in core binding factor acute myeloid leukemia. Leuk Res. 35:1376–1383. 2011. | |
Cairoli R, Beghini A, Grillo G, Nadali G, Elice F, Ripamonti CB, Colapietro P, Nichelatti M, Pezzetti L, Lunghi M, et al: Prognostic impact of c-KIT mutations in core binding factor leukemias: An Italian retrospective study. Blood. 107:3463–3468. 2006.PubMed/NCBI View Article : Google Scholar | |
Klein K, Kaspers G, Harrison CJ, Beverloo HB, Reedijk A, Bongers M, Cloos J, Pession A, Reinhardt D, Zimmerman M, et al: Clinical impact of additional cytogenetic aberrations,cKIT and RAS mutations, and treatment elements in pediatric t(8;21)-AML: Results from an international retrospective study by the international berlin-frankfurt-münster study group. J Clin Oncol. 33:4247–4258. 2015.PubMed/NCBI View Article : Google Scholar | |
Jones D, Yao H, Romans A, Dando C, Pierce S, Borthakur G, Hamilton A, Bueso-Ramos C, Ravandi F, Garcia-Manero G and Kantarjian H: Modeling interactions between leukemia-specific chromosomal changes, somatic mutations, and gene expression patterns during progression of core-binding factor leukemias. Genes Chromosomes Cancer. 49:182–191. 2010.PubMed/NCBI View Article : Google Scholar | |
Allen C, Hills RK, Lamb K, Evans C, Tinsley S, Sellar R, O'Brien M, Yin JL, Burnett AK, Linch DC and Gale RE: The importance of relative mutant level for evaluating impact on outcome of KIT, FLT3 and CBL mutations in core-binding factor acute myeloid leukemia. Leukemia. 27:1891–1901. 2013.PubMed/NCBI View Article : Google Scholar | |
Cairoli R, Beghini A, Morello E, Grillo G, Montillo M, Larizza L and Morra E: Imatinib mesylate in the treatment of core binding factor leukemias with KIT mutations. A report of three cases. Leuk Res. 29:397–400. 2005.PubMed/NCBI View Article : Google Scholar | |
Nanri T, Matsuno N, Kawakita T, Mitsuya H and Asou N: Imatinib mesylate for refractory acute myeloblastic leukemia harboring inv (16) and a C-KIT exon 8 mutation. Leukemia. 19:1673–1675. 2005.PubMed/NCBI View Article : Google Scholar | |
Cammenga J, Horn S, Bergholz U, Sommer G, Besmer P, Fiedler W and Stocking C: Extracellular KIT receptor mutants, commonly found in core binding factor AML, are constitutively active and respond to imatinib mesylate. Blood. 106:3958–3961. 2005.PubMed/NCBI View Article : Google Scholar | |
Zhang W, Lu Y, Zhen T, Chen X, Zhang M, Liu P, Weng X, Chen B and Wang Y: Homoharringtonine synergy with oridonin in treatment of t(8; 21) acute myeloid leukemia. Front Med. 13:388–397. 2019.PubMed/NCBI View Article : Google Scholar | |
Chen XJ, Zhang WN, Chen B, Xi WD, Lu Y, Huang JY, Wang YY, Long J, Wu SF, Zhang YX, et al: Homoharringtonine deregulates MYC transcriptional expression by directly binding NF-κB repressing factor. Proc Natl Acad Sci USA. 116:2220–2225. 2019.PubMed/NCBI View Article : Google Scholar | |
Santos FP, Jones D, Qiao W, Cortes JE, Ravandi F, Estey EE, Verma D, Kantarjian H and Borthakur G: Prognostic value of FLT3 mutations among different cytogenetic subgroups in acute myeloid leukemia. Cancer. 117:2145–2155. 2011.PubMed/NCBI View Article : Google Scholar | |
Gilliland DG and Griffin JD: The roles of FLT3 in hematopoiesis and leukemia. Blood. 100:1532–1542. 2002.PubMed/NCBI View Article : Google Scholar | |
Rosnet O, Buhring HJ, Marchetto S, Rappold I, Lavagna C, Sainty D, Arnoulet C, Chabannon C, Kanz L, Hannum C and Birnbaum D: Human FLT3/FLK2 receptor tyrosine kinase is expressed at the surface of normal and malignant hematopoietic cells. Leukemia. 10:238–248. 1996.PubMed/NCBI | |
Frohling S, Schlenk RF, Breitruck J, Benner A, Kreitmeier S, Tobis K, Dohner H and Dohner K: AML Study Group Ulm. Acute myeloid leukemia: Prognostic significance of activating FLT3 mutations in younger adults (16 to 60 years) with acute myeloid leukemia and normal cytogenetics: A study of the AML study group ulm. Blood. 100:4372–4380. 2002.PubMed/NCBI View Article : Google Scholar | |
Kottaridis PD, Gale RE, Frew ME, Harrison G, Langabeer SE, Belton AA, Walker H, Wheatley K, Bowen DT, Burnett AK, et al: The presence of a FLT3 internal tandem duplication in patients with acute myeloid leukemia (AML) adds important prognostic information to cytogenetic risk group and response to the first cycle of chemotherapy: Analysis of 854 patients from the United Kingdom Medical Research Council AML 10 and 12 trials. Blood. 98:1752–1759. 2001.PubMed/NCBI View Article : Google Scholar | |
Schnittger S, Schoch C, Dugas M, Kern W, Staib P, Wuchter C, Loffler H, Sauerland CM, Serve H, Buchner T, et al: Analysis of FLT3 length mutations in 1003 patients with acute myeloid leukemia: Correlation to cytogenetics, FAB subtype, and prognosis in the AMLCG study and usefulness as a marker for the detection of minimal residual disease. Blood. 100:59–66. 2002.PubMed/NCBI View Article : Google Scholar | |
Thiede C, Steudel C, Mohr B, Schaich M, Schakel U, Platzbecker U, Wermke M, Bornhauser M, Ritter M, Neubauer A, et al: Analysis of FLT3-activating mutations in 979 patients with acute myelogenous leukemia: Association with FAB subtypes and identification of subgroups with poor prognosis. Blood. 99:4326–4335. 2002.PubMed/NCBI View Article : Google Scholar | |
Schessl C, Rawat VP, Cusan M, Deshpande A, Kohl TM, Rosten PM, Spiekermann K, Humphries RK, Schnittger S, Kern W, et al: The AML1-ETO fusion gene and the FLT3 length mutation collaborate in inducing acute leukemia in mice. J Clin Invest. 115:2159–2168. 2005.PubMed/NCBI View Article : Google Scholar | |
Kim HG, Kojima K, Swindle CS, Cotta CV, Huo Y, Reddy V and Klug CA: FLT3-ITD cooperates with inv (16) to promote progression to acute myeloid leukemia. Blood. 111:1567–1574. 2008.PubMed/NCBI View Article : Google Scholar | |
Mead AJ, Linch DC, Hills RK, Wheatley K, Burnett AK and Gale RE: FLT3 tyrosine kinase domain mutations are biologically distinct from and have a significantly more favorable prognosis than FLT3 internal tandem duplications in patients with acute myeloid leukemia. Blood. 110:1262–1270. 2007.PubMed/NCBI View Article : Google Scholar | |
Pollyea DA: New drugs for acute myeloid leukemia inspired by genomics and when to use them. Hematology Am Soc Hematol Educ Program. 2018:45–50. 2018.PubMed/NCBI View Article : Google Scholar | |
Goemans BF, Zwaan CM, Miller M, Zimmermann M, Harlow A, Meshinchi S, Loonen AH, Hählen K, Reinhardt D, Creutzig U, et al: Mutations in KIT and RAS are frequent events in pediatric core-binding factor acute myeloid leukemia. Leukemia. 19:1536–1542. 2005.PubMed/NCBI View Article : Google Scholar | |
Bacher U, Haferlach T, Schoch C, Kern W and Schnittger S: Implications of NRAS mutations in AML: A study of 2502 patients. Blood. 107:3847–3853. 2006.PubMed/NCBI View Article : Google Scholar | |
Paschka P, Du J, Schlenk RF, Gaidzik VI, Bullinger L, Corbacioglu A, Späth D, Kayser S, Schlegelberger B, Krauter J, et al: Secondary genetic lesions in acute myeloid leukemia with inv (16) or t(16;16): A study of the German-Austrian AML study group (AMLSG). Blood. 121:170–177. 2013.PubMed/NCBI View Article : Google Scholar | |
Eisfeld AK, Kohlschmidt J, Schwind S, Nicolet D, Blachly JS, Orwick S, Shah C, Bainazar M, Kroll KW, Walker CJ, et al: Mutations in the CCND1 and CCND2 genes are frequent events in adult patients with t(8;21)(q22;q22) acute myeloid leukemia. Leukemia. 31:1278–1285. 2017.PubMed/NCBI View Article : Google Scholar | |
Kampa-Schittenhelm KM, Vogel W, Bonzheim I, Fend F, Horger M, Soekler M and Schittenhelm MM: Dasatinib overrides the differentiation blockage in a patient with mutant-KIT D816V positive CBFβ-MYH11 leukemia. Oncotarget. 31:11876–11882. 2018.PubMed/NCBI View Article : Google Scholar | |
Wang D, Qiao C, Xiao M, Geng Z, Shang Z, He J, Huang M, Yang Y, Zhang N, Liu Y, et al: Integrative analysis of prognostic factors in Chinese core binding factor leukemia. Biochem Bioph Res Commun. 428:411–415. 2012.PubMed/NCBI View Article : Google Scholar | |
Shimada A, Taki T, Kubota C, Itou T, Tawa A, Horibe K, Tsuchida I, Hanada R, Tsukimoto I and Hayashi Y: Japanese childhood AML cooperative study group. N822 mutation of KIT gene was frequent in pediatric acute myeloid leukemia patients with t(8;21) in Japan: A study of the Japanese childhood AML cooperative study group. Leukemia. 21:2218–2219. 2007.PubMed/NCBI View Article : Google Scholar | |
Wei H, Wang Y, Zhou C, Lin D, Liu B, Liu K, Qiu S, Gong B, Li Y, Zhang G, et al: Distinct genetic alteration profiles of acute myeloid leukemia between caucasian and eastern Asian population. J Hematol Oncol. 10(18)2018.PubMed/NCBI View Article : Google Scholar | |
Itzykson R, Duployez N, Fasan A, Decool G, Marceau-Renaut A, Meggendorfer M, Jourdan E, Petit A, Lapillonne H, Micol J, et al: Clonal interference of signaling mutations worsens prognosis in core-binding factor acute myeloid leukemia. Blood. 132:187–196. 2018.PubMed/NCBI View Article : Google Scholar |