1
|
Siegel RA, Miller KD and Jemal A: Cancer
statistics, 2020. CA Cancer J Clin. 70:7–30. 2020.PubMed/NCBI View Article : Google Scholar
|
2
|
Perez CA, Michalski JM and Zelefsky MJ:
Low-risk prostate cancer. In: Perez & Brady's Principles and
Practice of Tadiation Oncology. Halperin EC, Wazer DE, Perez CA and
Brady LW (eds). Wolters Kluwer, Philadelphia, pp1560-1601,
2019.
|
3
|
Wolff D, Stieler F, Welzel G, Lorenz F,
Abo-Madyan Y, Mai S, Herskind C, Polednik M, Steil V, Wenz F and
Lohr F: Volumetric modulated arc therapy (VMAT) vs. Serial
tomotherapy, step-and-shoot IMRT and 3D-conformal RT for treatment
of prostate cancer. Radiother Oncol. 93:226–233. 2009.PubMed/NCBI View Article : Google Scholar
|
4
|
Palma D, Vollans E, James K, Nakano S,
Moiseenko V, Shaffer R, McKenzie M, Morris J and Otto K: Volumetric
modulated arc therapy for delivery of prostate radiotherapy:
Comparison with intensity-modulated radiotherapy and
three-dimensional conformal radiotherapy. Int J Radiat Oncol Biol
Phys. 72:996–1001. 2008.PubMed/NCBI View Article : Google Scholar
|
5
|
Ren W, Sun C, Lu N, Xu Y, Han F, Liu YP
and Dai J: Dosimetric comparison of intensity-modulated
radiotherapy and volumetric-modulated arc radiotherapy in patients
with prostate cancer: A meta-analysis. J Appl Clin Med Phys.
17:254–262. 2016.PubMed/NCBI View Article : Google Scholar
|
6
|
Cosset JM, Nassf M, Saidi R, Pugnaire J,
Ben Abdennebi A and Noel A: Which photon energy for
intensity-modulated radiotherapy and volumetric-modulated arc
therapy in 2019? Cancer Radiother. 23:58–61. 2019.PubMed/NCBI View Article : Google Scholar
|
7
|
Pasler M, Georg D, Wirtz H and Lutterbach
J: Effect of photon-beam energy on VMAT and IMRT treatment plan
quality and dosimetric accuracy for advanced prostate cancer.
Strahlenther Onkol. 187:792–798. 2011.PubMed/NCBI View Article : Google Scholar
|
8
|
Kleiner H and Podgorsak MB: The dosimetric
significance of using 10-MV photons for volumetric modulated arc
therapy for post-prostatectomy irradiation of the prostate bed.
Radiol Oncol. 50:232–237. 2016.PubMed/NCBI View Article : Google Scholar
|
9
|
Stanley DN, Popp T, Ha CS, Swanson GP, Eng
TY, Papanikolaou N and Gutierez AN: Dosimetric effect of photon
beam energy on volumetric modulated arc therapy treatment plan
quality due to body habitus in advanced prostate cancer. Pract
Radiat Oncol. 5:e625–e633. 2015.PubMed/NCBI View Article : Google Scholar
|
10
|
Mattes MD, Tai C, Lee A, Ashamalla H and
Ikoro NC: The dosimetric effects of photon energy on the quality of
prostate volumetric modulated arc therapy. Pract Radiat Oncol.
4:e39–e44. 2014.PubMed/NCBI View Article : Google Scholar
|
11
|
Lee WR, Dignam JJ, Amin MB, Bruner DW, Lo
D, Swanson GP, Shah AB, D'Souza DP, Michalski JM, Dayes IS, et al:
Randomized phase III noninferiority study comparing two
radiotherapy fractionation schedules in patients with low-risk
prostate cancer. J Clin Oncol. 34:2325–2332. 2016.PubMed/NCBI View Article : Google Scholar
|
12
|
Morgan SC, Hoffman K, Loblaw DA,
Buyyounouski MK, Patton C, Barocas D, Bentzen S, Chang M,
Efstathiou J, Greany P, et al: Hypofractionated radiation therapy
for localized prostate cancer: Executive summary of an ASTRO, ASCO,
and AUA evidence-based guideline. J Urol. 201:528–534.
2019.PubMed/NCBI View Article : Google Scholar
|
13
|
Mazonakis M, Kachris S and Damilakis J:
Secondary bladder and rectal cancer risk estimates following
standard fractionated and moderately hypofractionated VMAT for
prostate carcinoma. Med Phys. 47:2805–2813. 2020.PubMed/NCBI View
Article : Google Scholar
|
14
|
Wallis CJ, Mahar AL, Choo R, Herschom S,
Kodama RT, Shah PS, Danjoux C, Narod SA and Nam RK: Second
malignancies after radiotherapy for prostate cancer: Systematic
review and meta-analysis. BMJ. 352(i851)2016.PubMed/NCBI View
Article : Google Scholar
|
15
|
Dasu A and Toma-Dasu I: Models for the
risk of secondary cancer from radiation therapy. Phys Med.
42:232–238. 2017.PubMed/NCBI View Article : Google Scholar
|
16
|
Mazonakis M and Damilakis J: Cancer risk
after radiotherapy for benign diseases. Phys Med. 42:285–291.
2017.PubMed/NCBI View Article : Google Scholar
|
17
|
Schneider U, Sumila M and Robotka J:
Site-specific dose-response relationships for cancer induction from
the combined Japanese A-bomb and Hodgkin cohorts for doses relevant
to radiotherapy. Theor Biol Med Model. 8(27)2011.PubMed/NCBI View Article : Google Scholar
|
18
|
Murray LJ, Thompson CM, Lilley J, Cosgrove
V, Franks K, Sebag-Montefiore D and Henry AM: Radiation-induced
second primary cancer risks from modern external beam radiotherapy
for early prostate cancer: Impact of stereotactic ablative
radiotherapy (SABR), volumetric modulated arc therapy (VMAT) and
flattening filter free (FFF) radiotherapy. Phys Med Biol.
60:1237–1257. 2015.PubMed/NCBI View Article : Google Scholar
|
19
|
Arias E: United States life tables, 2017.
Natl Vital Stat Rep. 68:1–66. 2019.PubMed/NCBI
|
20
|
Kry SF, Salehpour M, Followill DS, Stovall
M, Kuban DA, White RA and Rosen II: The calculated risk of fatal
secondary malignancies from intensity-modulated radiation therapy.
Int J Radiat Oncol Biol Phys. 62:1195–1203. 2005.PubMed/NCBI View Article : Google Scholar
|
21
|
Pirzkall A, Carol MP, Pickett B, Xia P,
Roach M III and Verhey LJ: The effect of beam energy and number of
fields on photon-based IMRT for deep-seated targets. Int J Radiat
Oncol Biol Phys. 53:434–442. 2002.PubMed/NCBI View Article : Google Scholar
|
22
|
Stokkevag CH, Engeseth GM, Hysing LB,
Ytre-Hauge KS, Ekanger C and Muren LP: Risk of radiation-induced
secondary rectal and bladder cancer following radiotherapy of
prostate cancer. Acta Oncol. 54:1317–1325. 2015.PubMed/NCBI View Article : Google Scholar
|
23
|
Fontenot JD, Lee AK and Newhauser WD: Risk
of secondary malignant neoplasms from proton therapy and intensity
modulated X-ray therapy for early-stage prostate cancer. Int J
Radiat Oncol Biol Phys. 74:616–622. 2009.PubMed/NCBI View Article : Google Scholar
|
24
|
Sanchez-Nietto B, Romero-Exposito M,
Terron JA, Irazola L, Garcia Hernandez MT, Mateos JC, Rosello J,
Planes D, Paiusco M and Sanchez-Doblado F: External phοton
radiation treatment for prostate cancer: Uncomplicated and
cancer-free probability assessment of 36 plans. Phys Med. 66:88–96.
2019.PubMed/NCBI View Article : Google Scholar
|
25
|
Kry SF, Bednarz B, Howell RM, Dauer L,
Followill D, Klein E, Paganetti H, Wang B, Wuu CS and George Xu X:
AAPM TG-158: Measurement and calculation of doses outside the
treated volume from external-beam radiation therapy. Med Phys.
44:e391–e429. 2017.PubMed/NCBI View
Article : Google Scholar
|
26
|
Mazonakis M, Damilakis J, Varveris H,
Theoharopoulos N and Gourtsoyiannis N: A method of estimating fetal
dose during brain radiation therapy. Int J Radiat Oncol Biol Phys.
44:455–459. 1999.PubMed/NCBI View Article : Google Scholar
|
27
|
Mazonakis M, Damilakis J, Varveris H and
Gourtsoyiannis N: Therapeutic external irradiation in women of
reproductive age: Risk estimation of hereditary effects. Br J
Radiol. 77:847–850. 2004.PubMed/NCBI View Article : Google Scholar
|
28
|
Bednarz B, Athar B and Xu XG: A
comparative study on the risk of second primary cancers in
out-of-field organs associated with radiotherapy of localized
prostate carcinoma using Monte Carlo-based accelerator and patient
models. Med Phys. 37:1987–1994. 2010.PubMed/NCBI View Article : Google Scholar
|
29
|
Bahtiyar N, Onaran I, Aydemir B, Batykara
O, Toplan S, Agaoglu FY and Akyolcu MC: Monitoring of platelet
function parameters and microRNA expression levels in patients with
prostate cancer treated with volumetric modulated arc radiotherapy.
Oncol Lett. 16:4745–4753. 2018.PubMed/NCBI View Article : Google Scholar
|