1
|
Shimada H: p53 molecular approach to
diagnosis and treatment of esophageal squamous cell carcinoma. Ann
Gastroenterol Surg. 2:266–273. 2018.PubMed/NCBI View Article : Google Scholar
|
2
|
Kurtenkov O, Klaamas K, Mensdorff-Pouilly
S, Miljukhina L, Shljapnikova L and Chuzmarov V: Humoral immune
response to MUC1 and to the Thomsen-Friedenreich (TF) glycotope in
patients with gastric cancer: Relation to survival. Acta Oncol.
46:316–323. 2007.PubMed/NCBI View Article : Google Scholar
|
3
|
Koziol JA, Zhang JY, Casiano CA, Peng XX,
Shi FD, Feng AC, Chan EK and Tan EM: Recursive partitioning as an
approach to selection of immune markers for tumor diagnosis. Clin
Cancer Res. 9:5120–5126. 2003.PubMed/NCBI
|
4
|
Megliorino R, Shi FD, Peng XX, Wang X,
Chan EK, Tan EM and Zhang JY: Autoimmune response to anti-apoptotic
protein survivin and its association with antibodies to p53 and
c-myc in cancer detection. Cancer Detect Prev. 29:241–248.
2005.PubMed/NCBI View Article : Google Scholar
|
5
|
Werner S, Chen H, Tao S and Brenner H:
Systematic review: Serum autoantibodies in the early detection of
gastric cancer. Int J Cancer. 136:2243–2252. 2015.PubMed/NCBI View Article : Google Scholar
|
6
|
Hoshino I, Nagata M, Takiguchi N, Nabeya
Y, Ikeda A, Yokoi S, Kuwajima A, Tagawa M, Matsushita K, Satoshi Y
and Hideaki S: Panel of autoantibodies against multiple
tumor-associated antigens for detecting gastric cancer. Cancer Sci.
108:308–315. 2017.PubMed/NCBI View Article : Google Scholar
|
7
|
Call KM, Glaser T, Ito CY, Buckler AJ,
Pelletier J, Haber DA, Rose EA, Kral A, Yeger H, Lewis WH, et al:
Isolation and characterization of a zinc finger polypeptide gene at
the human chromosome 11 Wilms' tumor locus. Cell. 60:509–520.
1990.PubMed/NCBI View Article : Google Scholar
|
8
|
Inoue K, Ogawa H, Yamagami T, Soma T, Tani
Y, Tatekawa T, Oji Y, Tamaki H, Kyo T, Dohy H, et al: Long-term
follow-up of minimal residual disease in leukemia patients by
monitoring WT1 (Wilms tumor gene) expression levels. Blood.
88:2267–2278. 1996.PubMed/NCBI
|
9
|
Oji Y, Miyoshi S, Maeda H, Hayashi S,
Tamaki H, Nakatsuka S, Yao M, Takahashi E, Nakano Y, Hirabayashi H,
et al: Overexpression of the Wilms' tumor gene WT1 in de novo lung
cancers. Int J Cancer. 100:297–303. 2002.PubMed/NCBI View Article : Google Scholar
|
10
|
Oji Y, Yamamoto H, Nomura M, Nakano Y,
Ikeba A, Nakatsuka S, Abeno S, Kiyotoh E, Jomgeow T, Sekimoto M, et
al: Overexpression of the Wilms' tumor gene WT1 in colorectal
adenocarcinoma. Cancer Sci. 94:712–717. 2003.PubMed/NCBI View Article : Google Scholar
|
11
|
Nakatsuka S, Oji Y, Horiuchi T, Kanda T,
Kitagawa M, Takeuchi T, Kawano K, Kuwae Y, Yamauchi A, Okumura M,
et al: Immunohistochemical detection of WT1 protein in a variety of
cancer cells. Mod Pathol. 19:804–814. 2006.PubMed/NCBI View Article : Google Scholar
|
12
|
Oji Y, Suzuki T, Nakano Y, Maruno M,
Nakatsuka S, Jomgeow T, Abeno S, Tatsumi N, Yokota A, Aoyagi S, et
al: Overexpression of the Wilms' tumor gene W T1 in primary
astrocytic tumors. Cancer Sci. 95:822–827. 2004.PubMed/NCBI View Article : Google Scholar
|
13
|
Cheever MA, Allison JP, Ferris AS, Finn
OJ, Hastings BM, Hecht TT, Mellman I, Prindiville SA, Viner JL,
Weiner LM and Matrisian LM: The prioritization of cancer antigens:
A national cancer institute pilot project for the acceleration of
translational research. Clin Cancer Res. 15:5323–5337.
2009.PubMed/NCBI View Article : Google Scholar
|
14
|
Oka Y, Tsuboi A, Taguchi T, Osaki T, Kyo
T, Nakajima H, Elisseeva OA, Oji Y, Kawakami M, Ikegame K, et al:
Induction of WT1 (Wilms' tumor gene)-specific cytotoxic T
lymphocytes by WT1 peptide vaccine and the resultant cancer
regression. Proc Natl Acad Sci USA. 101:13885–13890.
2004.PubMed/NCBI View Article : Google Scholar
|
15
|
Keilholz U, Letsch A, Busse A, Asemissen
AM, Bauer S, Blau IW, Hofmann WK, Uharek L, Thiel E and
Scheibenbogen C: A clinical and immunologic phase 2 trial of Wilms
tumor gene product 1 (WT1) peptide vaccination in patients with AML
and MDS. Blood. 113:6541–6548. 2009.PubMed/NCBI View Article : Google Scholar
|
16
|
Anguille S, Van de Velde AL, Smits EL, Van
Tendeloo VF, Juliusson G, Cools N, Nijs G, Stein B, Lion E, Van
Driessche A, et al: Dendritic cell vaccination as postremission
treatment to prevent or delay relapse in acute myeloid leukemia.
Blood. 130:1713–1721. 2017.PubMed/NCBI View Article : Google Scholar
|
17
|
Elisseeva OA, Oka Y, Tsuboi A, Ogata K, Wu
F, Kim EH, Soma T, Tamaki H, Kawakami M, Oji Y, et al: Humoral
immune responses against Wilms tumor gene WT1 product in patients
with hematopoietic malignancies. Blood. 99:3272–3279.
2002.PubMed/NCBI View Article : Google Scholar
|
18
|
Wu F, Oka Y, Tsuboi A, Elisseeva OA, Ogata
K, Nakajima H, Fujiki F, Masuda T, Murakami M, Yoshihara S, et al:
Th1-biased humoral immune responses against Wilms tumor gene WT1
product in the patients with hematopoietic malignancies. Leukemia.
19:268–274. 2005.PubMed/NCBI View Article : Google Scholar
|
19
|
Oji Y, Kitamura Y, Kamino E, Kitano A,
Sawabata N, Inoue M, Mori M, Nakatsuka S, Sakaguchi N, Miyazaki K,
et al: WT1 IgG antibody for early detection of nonsmall cell lung
cancer and as its prognostic factor. Int J Cancer. 125:381–387.
2009.PubMed/NCBI View Article : Google Scholar
|
20
|
Oji Y, Hashimoto N, Tsuboi A, Murakami Y,
Iwai M, Kagawa N, Chiba Y, Izumoto S, Elisseeva O, Ichinohasama R,
et al: Association of WT1 IgG antibody against WT1 peptide with
prolonged survival in glioblastoma multiforme patients vaccinated
with WT1 peptide. Int J Cancer. 139:1391–1401. 2016.PubMed/NCBI View Article : Google Scholar
|
21
|
Jones K, Savulescu AF, Brombacher F and
Hadebe S: Immunoglobulin M in Health and Diseases: How Far Have We
Come and What Next? Front Immunol. 11(595535)2020.PubMed/NCBI View Article : Google Scholar
|
22
|
Kubagawa H, Oka S, Kubagawa Y, Torii I,
Takayama E, Kang DW, Gartland GL, Bertoli LF, Mori H, Takatsu H, et
al: Identity of the elusive IgMFc receptor (FcmuR) in humans. J Exp
Med. 206:2779–2793. 2009.PubMed/NCBI View Article : Google Scholar
|
23
|
Japanese Gastric Cancer Association.
Japanese classification of gastric carcinoma: 3rd English edition.
Gastric Cancer. 14:101–112. 2011.PubMed/NCBI View Article : Google Scholar
|
24
|
Kanda Y: Investigation of the freely
available easy-to-use software ‘EZR’ for medical statistics. Bone
Marrow Transplant. 48:452–458. 2013.PubMed/NCBI View Article : Google Scholar
|
25
|
Desmetz C, Mange A, Maudelonde T and
Solassol J: Autoantibody signatures: Progress and perspectives for
early cancer detection. J Cell Mol Med. 15:2013–2024.
2011.PubMed/NCBI View Article : Google Scholar
|
26
|
Meistere I, Werner S, Zayakin P, Siliņa K,
Rulle U, Pismennaja A, Šantare D, Kikuste I, Isajevs S, Leja M, et
al: The prevalence of cancer-associated autoantibodies in patients
with gastric cancer and progressive grades of premalignant lesions.
Cancer Epidemiol Biomarkers Prev. 26:1564–1574. 2017.PubMed/NCBI View Article : Google Scholar
|
27
|
Yang Q, Qin J, Sun G, Qiu C, Jiang D, Ye
H, Wang X, Dai L, Zhu J, Wang P and Zhang J: Discovery and
validation of serum autoantibodies against tumor-associated
antigens as biomarkers in gastric adenocarcinoma based on the
focused protein arrays. Clin Transl Gastroenterol.
12(e00284)2020.PubMed/NCBI View Article : Google Scholar
|
28
|
Zayakin P, Ancāns G, Siliņa K, Meistere I,
Kalniņa Z, Andrejeva D, Endzeliņš E, Ivanova L, Pismennaja A,
Ruskule A, et al: Tumor associated autoantibody signature for the
early detection of gastric cancer. Int J Cancer. 132:137–147.
2013.PubMed/NCBI View Article : Google Scholar
|
29
|
Shankaran V, Ikeda H, Bruce AT, White JM,
Swanson PE, Old LJ and Schreiber RD: IFNgamma and lymphocytes
prevent primary tumour development and shape tumour immunogenicity.
Nature. 410:1107–1111. 2001.PubMed/NCBI View
Article : Google Scholar
|
30
|
Schreiber RD, Old LJ and Smyth MJ: Cancer
immunoediting: Integrating immunity's roles in cancer suppression
and promotion. Science. 331:1565–1570. 2011.PubMed/NCBI View Article : Google Scholar
|
31
|
McDaniel JR, Pero SC, Voss WN, Shukla GS,
Sun Y, Schaetzle S, Lee CH, Horton AP, Harlow S, Gollihar J, et al:
Identification of tumor-reactive B cells and systemic IgG in breast
cancer based on clonal frequency in the sentinel lymph node. Cancer
Immunol Immunother. 67:29–738. 2018.PubMed/NCBI View Article : Google Scholar
|
32
|
Gillmore R, Xue SA, Holler A, Kaeda J,
Hadjiminas D, Healy V, Dina R, Parry SC, Bellantuono I, Ghani Y, et
al: Detection of Wilms' tumor antigen-specific CTL in
tumor-draining lymph nodes of patients with early breast cancer.
Clin Cancer Res. 12:34–42. 2006.PubMed/NCBI View Article : Google Scholar
|
33
|
Sarvaria A, Madrigal JA and Saudemont A: B
cell regulation in cancer and anti-tumor immunity. Cell Mol
Immunol. 14:662–674. 2017.PubMed/NCBI View Article : Google Scholar
|
34
|
Tao H, Lu L, Xia Y, Dai F, Wang Y, Bao Y,
Lundy SK, Ito F, Pan Q, Zhang X, et al: Antitumor effector B cells
directly kill tumor cells via the Fas/FasL pathway and are
regulated by IL-10. Eur J Immunol. 45:999–1009. 2015.PubMed/NCBI View Article : Google Scholar
|
35
|
Olkhanud PB, Damdinsuren B, Bodogai M,
Gress RE, Sen R, Wejksza K, Malchinkhuu E, Wersto RP and Biragyn A:
Tumor-evoked regulatory B cells promote breast cancer metastasis by
converting resting CD4+ T cells to T-regulatory cells. Cancer Res.
71:3505–3515. 2011.PubMed/NCBI View Article : Google Scholar
|
36
|
Schwartz M, Zhang Y and Rosenblatt JD: B
cell regulation of the anti-tumor response and role in
carcinogenesis. J Immunother Cancer. 4(40)2016.PubMed/NCBI View Article : Google Scholar
|
37
|
Fereidan-Esfahani M, Nayfeh T, Warrington
A, Howe CL and Rodriguez M: IgM Natural autoantibodies in
physiology and the treatment of disease. Methods Mol Biol.
1904:53–81. 2019.PubMed/NCBI View Article : Google Scholar
|
38
|
Meffre E and Salmon JE: Autoantibody
selection and production in early human life. J Clin Invest.
117:598–601. 2007.PubMed/NCBI View Article : Google Scholar
|
39
|
Elkon K and Casali P: Nature and functions
of autoantibodies. Nat Clin Pract Rheumatol. 4:491–498.
2008.PubMed/NCBI View Article : Google Scholar
|