1
|
Keyel PA: Dnases in health and disease.
Dev Biol. 429:1–11. 2017.PubMed/NCBI View Article : Google Scholar
|
2
|
Yasutomo K, Horiuchi T, Kagami S,
Tsukamoto H, Hashimura C, Urushihara M and Kuroda Y: Mutation of
DNASE1 in people with systemic lupus erythematosus. Nat Genet.
28:313–314. 2001.PubMed/NCBI View
Article : Google Scholar
|
3
|
Bodaño A, Amarelo J, González A,
Gómez-Reino JJ and Conde C: Novel DNASE I mutations related to
systemic lupus erythematosus. Arthritis Rheum. 50:4070–4071.
2004.PubMed/NCBI View Article : Google Scholar
|
4
|
Frost PG and Lachmann PJ: The relationship
of desoxyribonuclease inhibitor levels in human sera to the
occurrence of antinuclear antibodies. Clin Exp Immunol. 3:447–455.
1968.PubMed/NCBI
|
5
|
Tew MB, Johnson RW, Reveille JD and Tan
FK: A molecular analysis of the low serum deoxyribonuclease
activity in lupus patients. Arthritis Rheum. 44:2446–2447.
2001.PubMed/NCBI View Article : Google Scholar
|
6
|
Sallai K, Nagy E, Derfalvy B, Müzes G and
Gergely P: Antinucleosome antibodies and decreased
deoxyribonuclease activity in sera of patients with systemic lupus
erythematosus. Clin Diagn Lab Immunol. 12:56–59. 2005.PubMed/NCBI View Article : Google Scholar
|
7
|
Hakkim A, Fürnrohr BG, Amann K, Laube B,
Abed UA, Brinkmann V, Herrmann M, Voll RE and Zychlinsky A:
Impairment of neutrophil extracellular trap degradation is
associated with lupus nephritis. Proc Natl Acad Sci USA.
107:9813–9818. 2010.PubMed/NCBI View Article : Google Scholar
|
8
|
Parrish JE, Ciccodicola A, Wehhert M, Cox
GF, Chen E and Nelson DL: A muscle-specific DNase I-like gene in
human Xq28. Hum Mol Genet. 4:1557–1564. 1995.PubMed/NCBI View Article : Google Scholar
|
9
|
Los M, Neubüser D, Coy JF, Mozoluk M,
Poustka A and Schulze-Osthoff K: Functional characterization of
DNase X, a novel endonuclease expressed in muscle cells.
Biochemistry. 39:7365–7373. 2000.PubMed/NCBI View Article : Google Scholar
|
10
|
Shiokawa D and Tanuma S: Characterization
of human DNase I family endonucleases and activation of DNase gamma
during apoptosis. Biochemistry. 40:143–152. 2001.PubMed/NCBI View Article : Google Scholar
|
11
|
Shiokawa D, Shika Y, Saito K, Yamazaki K
and Tanuma S: Physical and biochemical properties of mammalian
DNase X proteins: Non-AUG translation initiation of porcine and
bovine mRNAs for DNase X. Biochem J. 392:511–517. 2005.PubMed/NCBI View Article : Google Scholar
|
12
|
Shiokawa D, Matsushita T, Shika Y, Shimizu
M, Maeda M and Tanuma S: DNase X is a
glycosylphosphatidylinositol-anchored membrane enzyme that provides
a barrier to endocytosis-mediated transfer of a foreign gene. J
Biol Chem. 282:17132–17140. 2007.PubMed/NCBI View Article : Google Scholar
|
13
|
Malferrari G, Mazza U, Tresoldi C, Rovida
E, Nissim M, Mirabella M, Servidei S and Biunno I: Molecular
characterization of a novel endonuclease (Xib) and possible
involvement in lysosomal glycogen storage disorders. Exp Mol
Pathol. 66:123–130. 1999.PubMed/NCBI View Article : Google Scholar
|
14
|
Malferrari G, Mirabella M, D'Alessandra Y,
Servidei S and Biunno I: Deletion polymorphism of DNASE1L1, an
X-linked DNase I-like gene, in acid maltase deficiency disorders.
Exp Mol Pathol. 70:173–174. 2001.PubMed/NCBI View Article : Google Scholar
|
15
|
Fischer H, Eckhart L, Mildner M, Jaeger K,
Buchberger M, Ghannadan M and Tschachler E: DNase1L2 degrades
nuclear DNA during corneocyte formation. J Invest Dermatol.
127:24–30. 2007.PubMed/NCBI View Article : Google Scholar
|
16
|
Fischer H, Szabo S, Scherz J, Jaeger K,
Rossiter H, Buchberger M, Ghannadan M, Hermann M, Theussl HC, Tobin
DJ, et al: Essential role of the keratinocyte-specific endonuclease
DNase1L2 in the removal of nuclear DNA from hair and nails. J
Invest Dermatol. 131:1208–1215. 2011.PubMed/NCBI View Article : Google Scholar
|
17
|
Napirei M, Ricken A, Eulitz D, Knoop H and
Mannherz HG: Expression pattern of the deoxyribonuclease 1 gene:
Lessons from the Dnase1 knockout mouse. Biochem J. 380:929–937.
2004.PubMed/NCBI View Article : Google Scholar
|
18
|
Peitsch MC, Irmler M, French LE and
Tschopp J: Genomic organisation and expression of mouse
deoxyribonuclease I. Biochem Biophys Res Commun. 207:62–68.
1995.PubMed/NCBI View Article : Google Scholar
|
19
|
Napirei M, Ludwig S, Mezrhab J, Klöckl T
and Mannherz HG: Murine serum nucleases-contrasting effects of
plasmin and heparin on the activities of DNase1 and DNase1-like 3
(DNase1l3). FEBS J. 276:1059–1073. 2009.PubMed/NCBI View Article : Google Scholar
|
20
|
Boulares AH, Zoltoski AJ, Contreras FJ,
Yakovlev AG, Yoshihara K and Smulson ME: Regulation of DNAS1L3
endonuclease activity by poly(ADP-ribosyl)ation during
etoposide-induced apoptosis. Role of poly(ADP-ribose) polymerase-1
cleavage in endonuclease activation. J Biol Chem. 277:372–378.
2002.PubMed/NCBI View Article : Google Scholar
|
21
|
Liu QY, Lei JX, LeBlanc J, Sodja C, Ly D,
Charlebois C, Walker PR, Yamada T, Hirohashi S and Sikorska M:
Regulation of DNaseY activity by actinin-alpha4 during apoptosis.
Cell Death Differ. 11:645–654. 2004.PubMed/NCBI View Article : Google Scholar
|
22
|
Shiokawa D, Kobayashi T and Tanuma S:
Involvement of DNase gamma in apoptosis associated with myogenic
differentiation of C2C12 cells. J Biol Chem. 277:31031–31037.
2002.PubMed/NCBI View Article : Google Scholar
|
23
|
Mizuta R, Araki S, Furukawa M, Furukawa Y,
Ebara S, Shiokawa D, Hayashi K, Tanuma S and Kitamura D: DNase γ is
the effector endonuclease for internucleosomal DNA fragmentation in
necrosis. PLoS One. 8(e80223)2013.PubMed/NCBI View Article : Google Scholar
|
24
|
Shiokawa D, Tanaka M, Kimura T, Hashizume
K, Takasawa R, Ohyama H, Fujita K, Yamada T and Tanuma S:
Characterization of two DNase gamma-specific monoclonal antibodies
and the in situ detection of DNase gamma in the nuclei of apoptotic
rat thymocytes. Biochem Biophys Res Commun. 275:343–349.
2000.PubMed/NCBI View Article : Google Scholar
|
25
|
Higami Y, Tsuchiya T, To K, Chiba T,
Yamaza H, Shiokawa D, Tanuma S and Shimokawa I: Expression of DNase
gamma during Fas-independent apoptotic DNA fragmentation in rodent
hepatocytes. Cell Tissue Res. 316:403–407. 2004.PubMed/NCBI View Article : Google Scholar
|
26
|
Xiao Y, Yang K, Liu P, Ma D, Lei P and Liu
Q: Deoxyribonuclease 1-like 3 inhibits hepatocellular carcinoma
progression by inducing apoptosis and reprogramming glucose
metabolism. Int J Biol Sci. 18:82–95. 2022.PubMed/NCBI View Article : Google Scholar
|
27
|
Deng Z, Xiao M, Du D, Luo N, Liu D, Liu T,
Lian D and Peng J: DNASE1L3 as a prognostic biomarker associated
with immune cell infiltration in cancer. Onco Targets Ther.
14:2003–2017. 2021.PubMed/NCBI View Article : Google Scholar
|
28
|
Li B, Ge Y, Yan W, Gong B, Cao K, Zhao R,
Li C, Zhang Y, Jiang Y and Zuo S: DNASE1L3 inhibits proliferation,
invasion and metastasis of hepatocellular carcinoma by interacting
with β-catenin to promote its ubiquitin degradation pathway. Cell
Prolif. 55(e13273)2022.PubMed/NCBI View Article : Google Scholar
|
29
|
Al-Mayouf SM, Sunker A, Abdwani R, Abrawi
SA, Almurshedi F, Alhashmi N, Al Sonbul A, Sewairi W, Qari A,
Abdallah E, et al: Loss-of-function variant in DNASE1L3 causes a
familial form of systemic lupus erythematosus. Nat Genet.
43:1186–118. 2011.PubMed/NCBI View
Article : Google Scholar
|
30
|
Zochling J, Newell F, Charlesworth JC, Leo
P, Stankovich J, Cortes A, Zhou Y, Stevens W, Sahhar J, Roddy J, et
al: An Immunochip-based interrogation of scleroderma susceptibility
variants identifies a novel association at DNASE1L3. Arthritis Res
Ther. 16(438)2014.PubMed/NCBI View Article : Google Scholar
|
31
|
Ozçakar ZB, Foster J II, Diaz-Horta O,
Kasapcopur O, Fan YS, Yalçınkaya F and Tekin M: DNASE1L3 mutations
in hypocomplementemic urticarial vasculitis syndrome. Arthritis
Rheum. 65:2183–2189. 2013.PubMed/NCBI View Article : Google Scholar
|
32
|
Odaka C and Mizuochi T: Role of macrophage
lysosomal enzymes in the degradation of nucleosomes of apoptotic
cells. J Immunol. 163:5346–5352. 1999.PubMed/NCBI
|
33
|
Fischer H, Scherz J, Szabo S, Mildner M,
Benarafa C, Torriglia A, Tschachler E and Eckhart L: DNase 2 is the
main DNA-degrading enzyme of the stratum corneum. PLoS One.
6(e17581)2011.PubMed/NCBI View Article : Google Scholar
|
34
|
Kawane K, Fukuyama H, Kondoh G, Takeda J,
Ohsawa Y, Uchiyama Y and Nagata S: Requirement of DNase II for
definitive erythropoiesis in the mouse fetal liver. Science.
292:1546–1549. 2001.PubMed/NCBI View Article : Google Scholar
|
35
|
Yoshida H, Okabe Y, Kawane K, Fukuyama H
and Nagata S: Lethal anemia caused by interferon-beta produced in
mouse embryos carrying undigested DNA. Nat Immunol. 6:49–56.
2005.PubMed/NCBI View
Article : Google Scholar
|
36
|
Kawane K, Ohtani M, Miwa K, Kizawa T,
Kanbara Y, Yoshioka Y, Yoshikawa H and Nagata S: Chronic
polyarthritis caused by mammalian DNA that escapes from degradation
in macrophages. Nature. 443:998–1002. 2006.PubMed/NCBI View Article : Google Scholar
|
37
|
Shiokawa D and Tanuma S: DLAD, a novel
mammalian divalent cation-independent endonuclease with homology to
DNase II. Nucleic Acids Res. 27:4083–4089. 1999.PubMed/NCBI View Article : Google Scholar
|
38
|
Krieser RJ, MacLea KS, Park JP and Eastman
A: The cloning, genomic structure, localization, and expression of
human deoxyribonuclease IIbeta. Gene. 269:205–216. 2001.PubMed/NCBI View Article : Google Scholar
|
39
|
Nishimoto S, Kawane K, Watanabe-Fukunaga
R, Fukuyama H, Ohsawa Y, Uchiyama Y, Hashida N, Ohguro N, Tano Y,
Morimoto T, et al: Nuclear cataract caused by a lack of DNA
degradation in the mouse eye lens. Nature. 424:1071–1074.
2003.PubMed/NCBI View Article : Google Scholar
|
40
|
Siddam AD, Gautier-Courteille C,
Perez-Campos L, Anand D, Kakrana A, Dang CA, Legagneux V, Méreau A,
Viet J, Gross JM, et al: The RNA-binding protein Celf1
post-transcriptionally regulates p27Kip1 and Dnase2b to control
fiber cell nuclear degradation in lens development. PLoS Genet.
14(e1007278)2018.PubMed/NCBI View Article : Google Scholar
|
41
|
From the American Association of
Neurological Surgeons (AANS), American Society of Neuroradiology
(ASNR), Cardiovascular and Interventional Radiology Society of
Europe (CIRSE), Canadian Interventional Radiology Association
(CIRA), Congress of Neurological Surgeons (CNS), European Society
of Minimally Invasive Neurological Therapy (ESMINT), European
Society of Neuroradiology (ESNR), European Stroke Organization
(ESO), Society for Cardiovascular Angiography and Interventions
(SCAI), Society of Interventional Radiology (SIR) et al.
Multisociety consensus quality improvement revised consensus
statement for endovascular therapy of acute ischemic stroke. Int J
Stroke. 13:612–632. 2018.PubMed/NCBI View Article : Google Scholar
|
42
|
Thorsson V, Gibbs DL, Brown SD, Wolf D,
Bortone DS, Ou Yang TH, Porta-Pardo E, Gao GF, Plaisier CL, Eddy
JA, et al: The immune landscape of cancer. Immunity.
48:812–830.e14. 2014.
|
43
|
Yoshihara K, Shahmoradgoli M, Martínez E,
Vegesna R, Kim H, Torres-Garcia W, Treviño V, Shen H, Laird PW,
Levine DA, et al: Inferring tumour purity and stromal and immune
cell admixture from expression data. Nat Commun.
4(2612)2013.PubMed/NCBI View Article : Google Scholar
|
44
|
Malta TM, Sokolov A, Gentles AJ,
Burzykowski T, Poisson L, Weinstein JN, Kamińska B, Huelsken J,
Omberg L, Gevaert O, et al: Machine learning identifies stemness
features associated with oncogenic dedifferentiation. Cell.
173:338–354.e15. 2018.PubMed/NCBI View Article : Google Scholar
|
45
|
Tamborero D, Rubio-Perez C, Muiños F,
Sabarinathan R, Piulats JM, Muntasell A, Dienstmann R, Lopez-Bigas
N and Gonzalez-Perez A: A Pan-cancer landscape of interactions
between solid tumors and infiltrating immune cell populations. Clin
Cancer Res. 24:3717–3728. 2018.PubMed/NCBI View Article : Google Scholar
|
46
|
Counis MF and Torriglia A: Acid DNases and
their interest among apoptotic endonucleases. Biochimie.
88:1851–1858. 2006.PubMed/NCBI View Article : Google Scholar
|
47
|
Charoentong P, Finotello F, Angelova M,
Mayer C, Efremova M, Rieder D, Hackl H and Trajanoski Z: Pan-cancer
immunogenomic analyses reveal genotype-immunophenotype
relationships and predictors of response to checkpoint blockade.
Cell Rep. 18:248–262. 2017.PubMed/NCBI View Article : Google Scholar
|
48
|
Senovilla L, Vacchelli E, Galon J,
Adjemian S, Eggermont A, Fridman WH, Sautès-Fridman C, Ma Y,
Tartour E, Zitvogel L, et al: Trial watch: Prognostic and
predictive value of the immune infiltrate in cancer.
Oncoimmunology. 1:1323–1343. 2012.PubMed/NCBI View Article : Google Scholar
|
49
|
Bi KW, Wei XG, Qin XX and Li B: BTK has
potential to be a prognostic factor for lung adenocarcinoma and an
indicator for tumor microenvironment remodeling: A study based on
TCGA data mining. Front Oncol. 10(424)2020.PubMed/NCBI View Article : Google Scholar
|
50
|
Wood SL, Pernemalm M, Crosbie PA and
Whetton AD: The role of the tumor-microenvironment in lung
cancer-metastasis and its relationship to potential therapeutic
targets. Cancer Treat Rev. 40:558–566. 2014.PubMed/NCBI View Article : Google Scholar
|
51
|
Quail DF and Joyce JA: Microenvironmental
regulation of tumor progression and metastasis. Nat Med.
19:1423–1437. 2013.PubMed/NCBI View Article : Google Scholar
|
52
|
Friedmann-Morvinski D and Verma IM:
Dedifferentiation and reprogramming: Origins of cancer stem cells.
EMBO Rep. 15:244–253. 2014.PubMed/NCBI View Article : Google Scholar
|
53
|
Ge Y, Gomez NC, Adam RC, Nikolova M, Yang
H, Verma A, Lu CP, Polak L, Yuan S, Elemento O and Fuchs E: Stem
cell lineage infidelity drives wound repair and cancer. Cell.
169:636–650.e14. 2017.PubMed/NCBI View Article : Google Scholar
|
54
|
Shibue T and Weinberg RA: EMT, CSCs, and
drug resistance: The mechanistic link and clinical implications.
Nat Rev Clin Oncol. 14:611–629. 2017.PubMed/NCBI View Article : Google Scholar
|
55
|
Visvader JE and Lindeman GJ: Cancer Stem
cells: Current status and evolving complexities. Cell Stem Cell.
10:717–728. 2012.PubMed/NCBI View Article : Google Scholar
|