1
|
Edwards BK, Noone AM, Mariotto AB, Simard
EP, Boscoe FP, Henley SJ, Jemal A, Cho H, Anderson RN, Kohler BA,
et al: Annual Report to the Nation on the status of cancer,
1975-2010, featuring prevalence of comorbidity and impact on
survival among persons with lung, colorectal, breast, or prostate
cancer. Cancer. 120:1290–1314. 2014.PubMed/NCBI View Article : Google Scholar
|
2
|
Molina JR, Yang P, Cassivi SD, Schild SE
and Adjei AA: Non-small cell lung cancer: Epidemiology, risk
factors, treatment, and survivorship. Mayo Clin Proc. 83:584–594.
2008.PubMed/NCBI View
Article : Google Scholar
|
3
|
Shepherd FA, Crowley J, Van Houtte P,
Postmus PE, Carney D, Chansky K, Shaikh Z and Goldstraw P:
International Association for the Study of Lung Cancer
International Staging Committee and Participating Institutions. The
International Association for the Study of Lung Cancer lung cancer
staging project: Proposals regarding the clinical staging of small
cell lung cancer in the forthcoming (seventh) edition of the tumor,
node, metastasis classification for lung cancer. J Thorac Oncol.
2:1067–1077. 2007.PubMed/NCBI View Article : Google Scholar
|
4
|
Martel MK, Ten Haken RK, Hazuka MB,
Kessler ML, Strawderman M, Turrisi AT, Lawrence TS, Fraass BA and
Lichter AS: Estimation of tumor control probability model
parameters from 3-D dose distributions of non-small cell lung
cancer patients. Lung Cancer. 24:31–37. 1999.PubMed/NCBI View Article : Google Scholar
|
5
|
Kong FM, Ten Haken RK, Schipper MJ,
Sullivan MA, Chen M, Lopez C, Kalemkerian GP and Hayman JA:
High-dose radiation improved local tumor control and overall
survival in patients with inoperable/unresectable non-small-cell
lung cancer: Long-term results of a radiation dose escalation
study. Int J Radiat Oncol Biol Phys. 63:324–333. 2005.PubMed/NCBI View Article : Google Scholar
|
6
|
Jeon TY, Lee KS, Yi CA, Chung MP, Kwon OJ,
Kim BT and Shim YM: Incremental value of PET/CT Over CT for
mediastinal nodal staging of non-small cell lung cancer: Comparison
between patients with and without idiopathic pulmonary fibrosis.
AJR Am J Roentgenol. 195:370–376. 2010.PubMed/NCBI View Article : Google Scholar
|
7
|
Dwamena BA, Sonnad SS, Angobaldo JO and
Wahl RL: Metastases from non-small cell lung cancer: Mediastinal
staging in the 1990s-meta-analytic comparison of PET and CT.
Radiology. 213:530–536. 1999.PubMed/NCBI View Article : Google Scholar
|
8
|
Cobben DC, de Boer HC, Tijssen RH, Rutten
EG, van Vulpen M, Peerlings J, Troost EG, Hoffmann AL and van Lier
AL: Emerging Role of MRI for radiation treatment planning in lung
cancer. Technol Cancer Res Treat. 15:NP47–NP60. 2016.PubMed/NCBI View Article : Google Scholar
|
9
|
van Herk M: Errors and margins in
radiotherapy. Semin Radiat Oncol. 14:52–64. 2004.PubMed/NCBI View Article : Google Scholar
|
10
|
Patni N, Burela N, Pasricha R, Goyal J,
Soni TP, Kumar TS and Natarajan T: Assessment of three-dimensional
setup errors in image-guided pelvic radiotherapy for uterine and
cervical cancer using kilovoltage cone-beam computed tomography and
its effect on planning target volume margins. J Cancer Res Ther.
13:131–136. 2017.PubMed/NCBI View Article : Google Scholar
|
11
|
Devic S: MRI simulation for radiotherapy
treatment planning. Med Phys. 39:6701–6711. 2012.PubMed/NCBI View Article : Google Scholar
|
12
|
Toloza EM, Harpole L and McCrory DC:
Noninvasive staging of non-small cell lung cancer: A review of the
current evidence. Chest. 123 (1 Suppl):137S–146S. 2003.PubMed/NCBI View Article : Google Scholar
|
13
|
Gould MK, Kuschner WG, Rydzak CE, Maclean
CC, Demas AN, Shigemitsu H, Chan JK and Owens DK: Test performance
of positron emission tomography and computed tomography for
mediastinal staging in patients with non-small-cell lung cancer: A
meta-analysis. Ann Intern Med. 139:879–892. 2003.PubMed/NCBI View Article : Google Scholar
|
14
|
Roberts PF, Follette DM, von Haag D, Park
JA, Valk PE, Pounds TR and Hopkins DM: Factors associated with
false-positive staging of lung cancer by positron emission
tomography. Ann Thorac Surg. 70:1154–1159; discussion 1159-1160.
2000.PubMed/NCBI View Article : Google Scholar
|
15
|
Silvestri GA, Gould MK, Margolis ML,
Tanoue LT, McCrory D, Toloza E and Detterbeck F: American College
of Chest Physicians. Noninvasive staging of non-small cell lung
cancer: ACCP evidence-based clinical practice guidelines (2nd
edition). Chest. 132 (3 Suppl):178S–201S. 2007.PubMed/NCBI View Article : Google Scholar
|
16
|
Hanna GG, McAleese J, Carson KJ, Stewart
DP, Cosgrove VP, Eakin RL, Zatari A, Lynch T, Jarritt PH, Young VA,
et al: (18)F-FDG PET-CT simulation for non-small-cell lung cancer:
Effect in patients already staged by PET-CT. Int J Radiat Oncol
Biol Phys. 77:24–30. 2010.PubMed/NCBI View Article : Google Scholar
|
17
|
Aristei C, Falcinelli L, Palumbo B and
Tarducci R: PET and PET-CT in radiation treatment planning for lung
cancer. Expert Rev Anticancer Ther. 10:571–584. 2010.PubMed/NCBI View Article : Google Scholar
|
18
|
Farr KP, West K, Yeghiaian-Alvandi R,
Farlow D, Stensmyr R, Chicco A and Hau E: Functional perfusion
image guided radiation treatment planning for locally advanced lung
cancer. Phys Imaging Radiat Oncol. 11:76–81. 2019.PubMed/NCBI View Article : Google Scholar
|
19
|
Bourgouin PM, McLoud TC, Fitzgibbon JF,
Mark EJ, Shepard JA, Moore EM, Rummeny E and Brady TJ:
Differentiation of bronchogenic carcinoma from postobstructive
pneumonitis by magnetic resonance imaging: Histopathologic
correlation. J Thorac Imaging. 6:22–27. 1991.PubMed/NCBI View Article : Google Scholar
|
20
|
Maheshwari S and Mukherji SK:
Diffusion-weighted imaging for differentiating recurrent
cholesteatoma from granulation tissue after mastoidectomy: Case
report. AJNR Am J Neuroradiol. 23:847–849. 2002.PubMed/NCBI
|
21
|
Moon JY, Kim SH, Choi SY, Hwang JA, Lee JE
and Lee J: Differentiating malignant from benign hyperintense
nodules on unenhanced T1-weighted images in patients with chronic
liver disease: Using gadoxetic acid-enhanced and diffusion-weighted
MR imaging. Jpn J Radiol. 36:489–499. 2018.PubMed/NCBI View Article : Google Scholar
|
22
|
Koh DM and Collins DJ: Diffusion-weighted
MRI in the body: Applications and challenges in oncology. AJR Am J
Roentgenol. 188:1622–1635. 2007.PubMed/NCBI View Article : Google Scholar
|
23
|
Iima M: Perfusion-driven intravoxel
incoherent motion (IVIM) MRI in Oncology: Applications, challenges,
and future trends. Magn Reson Med Sci. 20:125–138. 2021.PubMed/NCBI View Article : Google Scholar
|
24
|
Usuda K, Zhao XT, Sagawa M, Matoba M,
Kuginuki Y, Taniguchi M, Ueda Y and Sakuma T: Diffusion-weighted
imaging is superior to positron emission tomography in the
detection and nodal assessment of lung cancers. Ann Thorac Surg.
91:1689–1695. 2011.PubMed/NCBI View Article : Google Scholar
|
25
|
Stieb S, Elgohari B and Fuller CD:
Repetitive MRI of organs at risk in head and neck cancer patients
undergoing radiotherapy. Clin Transl Radiat Oncol. 18:131–139.
2019.PubMed/NCBI View Article : Google Scholar
|
26
|
Winter RM, Leibfarth S, Schmidt H, Zwirner
K, Mönnich D, Welz S, Schwenzer NF, la Fougère C, Nikolaou K,
Gatidis S, et al: Assessment of image quality of a
radiotherapy-specific hardware solution for PET/MRI in head and
neck cancer patients. Radiother Oncol. 128:485–491. 2018.PubMed/NCBI View Article : Google Scholar
|
27
|
Wee CW, Jang BS, Kim JH, Jeong CW, Kwak C,
Kim HH, Ku JH, Kim SH, Cho JY and Kim SY: Prediction of Pathologic
findings with MRI-based clinical staging using the bayesian network
modeling in prostate cancer: A radiation oncologist perspective.
Cancer Res Treat. 54:234–244. 2022.PubMed/NCBI View Article : Google Scholar
|
28
|
Navarria P, Reggiori G, Pessina F,
Ascolese AM, Tomatis S, Mancosu P, Lobefalo F, Clerici E, Lopci E,
Bizzi A, et al: Investigation on the role of integrated PET/MRI for
target volume definition and radiotherapy planning in patients with
high grade glioma. Radiother Oncol. 112:425–429. 2014.PubMed/NCBI View Article : Google Scholar
|
29
|
Zhang X, Fu Z, Gong G, Wei H, Duan J, Chen
Z, Chen X, Wang R and Yin Y: Implementation of diffusion-weighted
magnetic resonance imaging in target delineation of central lung
cancer accompanied with atelectasis in precision radiotherapy.
Oncol Lett. 14:2677–2682. 2017.PubMed/NCBI View Article : Google Scholar
|
30
|
Li Y, Wang L, Gao L, Jin J, et al:
Radiation Oncology, Version 5.0: 739, 2018.
|
31
|
Qi LP, Zhang XP, Tang L, Li J, Sun YS and
Zhu GY: Using diffusion-weighted MR imaging for tumor detection in
the collapsed lung: A preliminary study. Eur Radiol. 19:333–341.
2009.PubMed/NCBI View Article : Google Scholar
|
32
|
Senan S and De Ruysscher D: Critical
review of PET-CT for radiotherapy planning in lung cancer. Crit Rev
Oncol Hematol. 56:345–351. 2005.PubMed/NCBI View Article : Google Scholar
|
33
|
Yin LJ, Yu XB, Ren YG, Gu GH, Ding TG and
Lu Z: Utilization of PET-CT in target volume delineation for
three-dimensional conformal radiotherapy in patients with non-small
cell lung cancer and atelectasis. Multidiscip Respir Med.
8(21)2013.PubMed/NCBI View Article : Google Scholar
|
34
|
Pereira GC, Traughber M and Muzic RF Jr:
The role of imaging in radiation therapy planning: Past, present,
and future. Biomed Res Int. 2014(231090)2014.PubMed/NCBI View Article : Google Scholar
|
35
|
McAdams HP, Erasums JJ, Patz EF, Goodman
PC and Coleman RE: Evaluation of patients with round atelectasis
using 2-[18F]-fluoro-2-deoxy-D-glucose PET. J Comput Assist Tomogr.
22:601–604. 1998.PubMed/NCBI View Article : Google Scholar
|
36
|
Schmidt S, Nestle U, Walter K, Licht N,
Ukena D, Schnabel K and Kirsch CM: Optimization of radiotherapy
planning for non-small cell lung cancer (NSCLC) using 18FDG-PET.
Nuklearmedizin. 41:217–220. 2002.PubMed/NCBI(In German).
|
37
|
Chan R, He Y, Haque A and Zwischenberger
J: Computed tomographic-pathologic correlation of gross tumor
volume and clinical target volume in non-small cell lung cancer: A
pilot experience. Arch Pathol Lab Med. 125:1469–1472.
2001.PubMed/NCBI View Article : Google Scholar
|
38
|
Shao Y, Wang H, Chen H, Gu H, Duan Y, Feng
A, Li X and Xu Z: Dosimetric comparison and biological evaluation
of PET- and CT-based target delineation for LA-NSCLC using
auto-planning. Phys Med. 67:77–84. 2019.PubMed/NCBI View Article : Google Scholar
|
39
|
Chen H, Huang Y, Wang H, Shao Y, Yue NJ,
Gu H, Duan Y, Feng A and Xu Z: Dosimetric comparison and biological
evaluation of fixed-jaw intensity-modulated radiation therapy for
T-shaped esophageal cancer. Radiat Oncol. 16(158)2021.PubMed/NCBI View Article : Google Scholar
|
40
|
Deniaud-Alexandre E, Touboul E, Lerouge D,
Grahek D, Foulquier JN, Petegnief Y, Grès B, El Balaa H, Keraudy K,
Kerrou K, et al: Impact of computed tomography and 18F-deoxyglucose
coincidence detection emission tomography image fusion for
optimization of conformal radiotherapy in non-small-cell lung
cancer. Int J Radiat Oncol Biol Phys. 63:1432–1441. 2005.PubMed/NCBI View Article : Google Scholar
|
41
|
Zhao D, Hu Q, Qi L, Wang J, Wu H, Zhu G
and Yu H: Magnetic resonance (MR) imaging for tumor staging and
definition of tumor volumes on radiation treatment planning in
non-small cell lung cancer: A prospective radiographic cohort study
of single center clinical outcome. Medicine (Baltimore).
96(e5943)2017.PubMed/NCBI View Article : Google Scholar
|
42
|
Gao Z, Wilkins D, Eapen L, Morash C,
Wassef Y and Gerig L: A study of prostate delineation referenced
against a gold standard created from the visible human data.
Radiother Oncol. 85:239–246. 2007.PubMed/NCBI View Article : Google Scholar
|
43
|
McLaughlin PW, Evans C, Feng M and
Narayana V: Radiographic and anatomic basis for prostate contouring
errors and methods to improve prostate contouring accuracy. Int J
Radiat Oncol Biol Phys. 76:369–378. 2010.PubMed/NCBI View Article : Google Scholar
|
44
|
Yang RM, Li L, Wei XH, Guo YM, Huang YH,
Lai LS, Chen AM, Liu GS, Xiong WF, Luo LP and Jiang XQ:
Differentiation of central lung cancer from atelectasis: Comparison
of diffusion-weighted MRI with PET/CT. PLoS One.
8(e60279)2013.PubMed/NCBI View Article : Google Scholar
|
45
|
Seppala T, Visapaa H, Collan J, Kapanen M,
Beule A, Kouri M, Tenhunen M and Saarilahti K: Converting from CT-
to MRI-only-based target definition in radiotherapy of localized
prostate cancer: A comparison between two modalities. Strahlenther
Onkol. 191:862–868. 2015.PubMed/NCBI View Article : Google Scholar
|
46
|
Bradley J, Bae K, Choi N, Forster K,
Siegel BA, Brunetti J, Purdy J, Faria S, Vu T, Thorstad W and Choy
H: A phase II comparative study of gross tumor volume definition
with or without PET/CT fusion in dosimetric planning for
non-small-cell lung cancer (NSCLC): Primary analysis of Radiation
Therapy Oncology Group (RTOG) 0515. Int J Radiat Oncol Biol Phys.
82:435–441 e1. 2012.PubMed/NCBI View Article : Google Scholar
|
47
|
Bradley J, Thorstad WL, Mutic S, Miller
TR, Dehdashti F, Siegel BA, Bosch W and Bertrand RJ: Impact of
FDG-PET on radiation therapy volume delineation in non-small-cell
lung cancer. Int J Radiat Oncol Biol Phys. 59:78–86.
2004.PubMed/NCBI View Article : Google Scholar
|
48
|
Braun LH, Welz S, Viehrig M, Heinzelmann
F, Zips D and Gani C: Resolution of atelectasis during
radiochemotherapy of lung cancer with serious implications for
further treatment. A case report. Clin Transl Radiat Oncol. 9:1–4.
2017.PubMed/NCBI View Article : Google Scholar
|