1
|
Topol LZ, Marx M, Laugier D, Bogdanova NN,
Boubnov NV, Clausen PA, Calothy G and Blair DG: Identification of
drm, a novel gene whose expression is suppressed in transformed
cells and which can inhibit growth of normal but not transformed
cells in culture. Mol Cell Biol. 17:4801–4810. 1997.PubMed/NCBI View Article : Google Scholar
|
2
|
Pearce JJ, Penny G and Rossant J: A mouse
cerberus/Dan-related gene family. Dev Biol. 209:98–110.
1999.PubMed/NCBI View Article : Google Scholar
|
3
|
Topol LZ, Modi WS, Koochekpour S and Blair
DG: DRM/GREMLIN (CKTSF1B1) maps to human chromosome 15 and is
highly expressed in adult and fetal brain. Cytogenet Genome Res.
89:79–84. 2000.PubMed/NCBI View Article : Google Scholar
|
4
|
Topol LZ, Bardot B, Zhang Q, Resau J,
Huillard E, Marx M, Calothy G and Blair DG: Biosynthesis,
Post-translation modification, and functional characterization of
Drm/Gremlin. J Biol Chem. 275:8785–8793. 2000.PubMed/NCBI View Article : Google Scholar
|
5
|
Hsu DR, Economides AN, Wang X, Eimon PM
and Harland RM: The xenopus dorsalizing factor gremlin identifies a
novel family of secreted proteins that antagonize BMP Activities.
Mol Cell. 1:673–683. 1998.PubMed/NCBI View Article : Google Scholar
|
6
|
Zúñiga A, Haramis AP, McMahon AP and
Zeller R: Signal relay by BMP antagonism controls the SHH/FGF4
feedback loop in vertebrate limb buds. Nature. 401:598–602.
1999.PubMed/NCBI View
Article : Google Scholar
|
7
|
Michos O, Panman L, Vintersten K, Beier K,
Zeller R and Zuniga A: Gremlin-mediated BMP antagonism induces the
epithelial-mesenchymal feedback signaling controlling metanephric
kidney and limb organogenesis. Development. 131:3401–3410.
2004.PubMed/NCBI View Article : Google Scholar
|
8
|
McMahon R, Murphy M, Clarkson M, Taal M,
Mackenzie HS, Godson C, Martin F and Brady HR: IHG-2, a mesangial
cell gene induced by high glucose, is human gremlin. Regulation by
extracellular glucose concentration, cyclic mechanical strain, and
transforming growth factor-beta1. J Biol Chem. 275:9901–9904.
2000.PubMed/NCBI View Article : Google Scholar
|
9
|
Brazil DP, Church RH, Surae S, Godson C
and Martin F: BMP signalling: Agony and antagony in the family.
Trends Cell Biol. 25:249–264. 2015.PubMed/NCBI View Article : Google Scholar
|
10
|
Kaplan FS, Xu M, Seemann P, Connor JM,
Glaser DL, Carroll L, Delai P, Fastnacht-Urban E, Forman SJ,
Gillessen-Kaesbach G, et al: Classic and atypical fibrodysplasia
ossificans progressiva (FOP) phenotypes are caused by mutations in
the bone morphogenetic protein (BMP) type I receptor ACVR1. Hum
Mutat. 30:379–390. 2009.PubMed/NCBI View Article : Google Scholar
|
11
|
López-Rovira T, Chalaux E, Massagué J,
Rosa JL and Ventura F: Direct binding of Smad1 and Smad4 to two
distinct motifs mediates bone morphogenetic protein-specific
transcriptional activation of Id1 gene. J Biol Chem. 277:3176–3185.
2002.PubMed/NCBI View Article : Google Scholar
|
12
|
Huang H, Huang H, Li Y, Liu M, Shi Y, Chi
Y and Zhang T: Gremlin induces cell proliferation and extra
cellular matrix accumulation in mouse mesangial cells exposed to
high glucose via the ERK1/2 pathway. BMC Nephrol.
14(33)2013.PubMed/NCBI View Article : Google Scholar
|
13
|
Li Y, Wang Z, Wang S, Zhao J, Zhang J and
Huang Y: Gremlin-mediated decrease in bone morphogenetic protein
signaling promotes aristolochic acid-induced
epithelial-to-mesenchymal transition (EMT) in HK-2 cells.
Toxicology. 297:68–75. 2012.PubMed/NCBI View Article : Google Scholar
|
14
|
Rodrigues-Diez R, Lavoz C, Carvajal G,
Rayego-Mateos S, Rodrigues Diez RR, Ortiz A, Egido J, Mezzano S and
Ruiz-Ortega M: Gremlin is a downstream profibrotic mediator of
transforming growth factor-beta in cultured renal cells. Nephron
Exp Nephrol. 122:62–74. 2012.PubMed/NCBI View Article : Google Scholar
|
15
|
Mezzano S, Droguett A, Lavoz C, Krall P,
Egido J and Ruiz-Ortega M: Gremlin and renal diseases: Ready to
jump the fence to clinical utility? Nephrol Dial Transplant.
33:735–741. 2018.PubMed/NCBI View Article : Google Scholar
|
16
|
Namkoong H, Shin SM, Kim HK, Ha SA, Cho
GW, Hur SY, Kim TE and Kim JW: The bone morphogenetic protein
antagonist gremlin 1 is overexpressed in human cancers and
interacts with YWHAH protein. BMC Cancer. 6(74)2006.PubMed/NCBI View Article : Google Scholar
|
17
|
Davis H, Irshad S, Bansal M, Rafferty H,
Boitsova T, Bardella C, Jaeger E, Lewis A, Freeman-Mills L, Giner
FC, et al: Aberrant epithelial GREM1 expression initiates colonic
tumorigenesis from cells outside the stem cell niche. Nat Med.
21:62–70. 2015.PubMed/NCBI View
Article : Google Scholar
|
18
|
Karagiannis GS, Treacy A, Messenger D,
Grin A, Kirsch R, Riddell RH and Diamandis EP: Expression patterns
of bone morphogenetic protein antagonists in colorectal cancer
desmoplastic invasion fronts. Mol Oncol. 8:1240–1252.
2014.PubMed/NCBI View Article : Google Scholar
|
19
|
O'Reilly S: Gremlin: A complex molecule
regulating wound healing and fibrosis. Cell Mol Life Sci.
78:7917–7923. 2021.PubMed/NCBI View Article : Google Scholar
|
20
|
Chen MH, Yeh YC, Shyr YM, Jan YH, Chao Y,
Li CP, Wang SE, Tzeng CH, Chang PM, Liu CY, et al: Expression of
gremlin 1 correlates with increased angiogenesis and
progression-free survival in patients with pancreatic
neuroendocrine tumors. J Gastroenterol. 48:101–108. 2013.PubMed/NCBI View Article : Google Scholar
|
21
|
Siegel RL, Miller KD, Fuchs HE and Jemal
A: Cancer statistics, 2022. CA Cancer J Clin. 72:7–33.
2022.PubMed/NCBI View Article : Google Scholar
|
22
|
Schuetz CS, Bonin M, Clare SE, Nieselt K,
Sotlar K, Walter M, Fehm T, Solomayer E, Riess O, Wallwiener D, et
al: Progression-specific genes identified by expression profiling
of matched ductal carcinomas in situ and invasive breast tumors,
combining laser capture microdissection and oligonucleotide
microarray analysis. Cancer Res. 66:5278–5286. 2006.PubMed/NCBI View Article : Google Scholar
|
23
|
Tevaarwerk AJ, Gray RJ, Schneider BP,
Smith ML, Wagner LI, Fetting JH, Davidson N, Goldstein LJ, Miller
KD and Sparano JA: Survival in patients with metastatic recurrent
breast cancer after adjuvant chemotherapy: Little evidence of
improvement over the past 30 years. Cancer. 119:1140–1148.
2013.PubMed/NCBI View Article : Google Scholar
|
24
|
Park SA, Sung NJ, Choi BJ, Kim W, Kim SH
and Surh YJ: Gremlin-1 augments the oestrogen-related receptor α
signalling through EGFR activation: Implications for the
progression of breast cancer. Br J Cancer. 123:988–999.
2020.PubMed/NCBI View Article : Google Scholar
|
25
|
Ren J, Smid M, Iaria J, Salvatori DCF, van
Dam H, Zhu HJ, Martens JWM and Ten Dijke P: Cancer-associated
fibroblast-derived Gremlin 1 promotes breast cancer progression.
Breast Cancer Res. 21(109)2019.PubMed/NCBI View Article : Google Scholar
|
26
|
Ma XJ, Dahiya S, Richardson E, Erlander M
and Sgroi DC: Gene expression profiling of the tumor
microenvironment during breast cancer progression. Breast Cancer
Res. 11(R7)2009.PubMed/NCBI View
Article : Google Scholar
|
27
|
Sung NJ, Kim NH, Surh YJ and Park SA:
Gremlin-1 promotes metastasis of breast cancer cells by activating
STAT3-MMP13 signaling pathway. Int J Mol Sci.
21(9227)2020.PubMed/NCBI View Article : Google Scholar
|
28
|
Loibl S, Poortmans P, Morrow M, Denkert C
and Curigliano G: Breast cancer. Lancet. 397:1750–1769.
2021.PubMed/NCBI View Article : Google Scholar
|
29
|
Wolpin BM, Meyerhardt JA, Mamon HJ and
Mayer RJ: Adjuvant treatment of colorectal cancer. CA Cancer J
Clin. 57:168–185. 2007.PubMed/NCBI View Article : Google Scholar
|
30
|
Boukouris AE, Theochari M, Stefanou D,
Papalambros A, Felekouras E, Gogas H and Ziogas DC: Latest evidence
on immune checkpoint inhibitors in metastatic colorectal cancer: A
2022 update. Crit Rev Oncol Hematol. 173(103663)2022.PubMed/NCBI View Article : Google Scholar
|
31
|
Cheng HC, Chang TK, Su WC, Tsai HL and
Wang JY: Narrative review of the influence of diabetes mellitus and
hyperglycemia on colorectal cancer risk and oncological outcomes.
Transl Oncol. 14(101089)2021.PubMed/NCBI View Article : Google Scholar
|
32
|
Ng MC, Shriner D, Chen BH, Li J, Chen WM,
Guo X, Liu J, Bielinski SJ, Yanek LR, Nalls MA, et al:
Meta-analysis of genome-wide association studies in African
Americans provides insights into the genetic architecture of type 2
diabetes. PLoS Genet. 10(e1004517)2014.PubMed/NCBI View Article : Google Scholar
|
33
|
Saxena R, Elbers CC, Guo Y, Peter I, Gaunt
TR, Mega JL, Lanktree MB, Tare A, Castillo BA, Li YR, et al:
Large-scale gene-centric meta-analysis across 39 studies identifies
type 2 diabetes loci. Am J Hum Genet. 90:410–425. 2012.PubMed/NCBI View Article : Google Scholar
|
34
|
Kobayashi H, Gieniec KA, Wright JA, Wang
T, Asai N, Mizutani Y, Lida T, Ando R, Suzuki N, Lannagan TRM, et
al: The balance of stromal BMP signaling mediated by GREM1 and ISLR
drives colorectal carcinogenesis. Gastroenterology.
160:1224–1239.e30. 2021.PubMed/NCBI View Article : Google Scholar
|
35
|
Bellam N and Pasche B: TGF-beta signaling
alterations and colon cancer. Cancer Treat Res. 155:85–103.
2010.PubMed/NCBI View Article : Google Scholar
|
36
|
Li J, Liu H, Zou L, Ke J, Zhang Y, Zhu Y,
Yang Y, Gong Y, Tian J, Zou D, et al: A functional variant in GREM1
confers risk for colorectal cancer by disrupting a hsa-miR-185-3p
binding site. Oncotarget. 8:61318–61326. 2017.PubMed/NCBI View Article : Google Scholar
|
37
|
Dutton LR, Hoare OP, McCorry AMB, Redmond
KL, Adam NE, Canamara S, Bingham V, Mullan PB, Lawler M, Dunne PD
and Brazil DP: Fibroblast-derived Gremlin1 localises to epithelial
cells at the base of the intestinal crypt. Oncotarget.
10:4630–4639. 2019.PubMed/NCBI View Article : Google Scholar
|
38
|
Low END, Mokhtar NM, Wong Z and Raja Ali
RA: Colonic mucosal transcriptomic changes in patients with
long-duration ulcerative colitis revealed colitis-associated cancer
pathways. J Crohns Colitis. 13:755–763. 2019.PubMed/NCBI View Article : Google Scholar
|
39
|
Park W, Chawla A and O'Reilly EM:
Pancreatic cancer: A review. JAMA. 326:851–862. 2021.PubMed/NCBI View Article : Google Scholar
|
40
|
Lan L, Evan T, Li H, Hussain A, Ruiz EJ,
Zaw Thin M, Ferreira RMM, Ps H, Riising EM, Zen Y, et al: GREM1 is
required to maintain cellular heterogeneity in pancreatic cancer.
Nature. 607:163–168. 2022.PubMed/NCBI View Article : Google Scholar
|
41
|
Curran SP, Hickey FB, Watson A, Godson C
and Brazil DP: Deletion of Gremlin1 increases cell proliferation
and migration responses in mouse embryonic fibroblasts. Cell
Signal. 24:889–898. 2012.PubMed/NCBI View Article : Google Scholar
|
42
|
van Vlodrop IJ, Baldewijns MM, Smits KM,
Schouten LJ, van Neste L, van Criekinge W, van Poppel H, Lerut E,
Schuebel KE, Ahuja N, et al: Prognostic significance of Gremlin1
(GREM1) promoter CpG island hypermethylation in clear cell renal
cell carcinoma. Am J Pathol. 176:575–584. 2010.PubMed/NCBI View Article : Google Scholar
|
43
|
Miao H, Wang N, Shi LX, Wang Z and Song
WB: Overexpression of mircoRNA-137 inhibits cervical cancer cell
invasion, migration and epithelial-mesenchymal transition by
suppressing the TGF-β/smad pathway via binding to GREM1. Cancer
Cell Int. 19(147)2019.PubMed/NCBI View Article : Google Scholar
|
44
|
Hong SB, Oh H, Valera VA, Stull J, Ngo DT,
Baba M, Merino MJ, Linehan WM and Schmidt LS: Tumor suppressor FLCN
inhibits tumorigenesis of a FLCN-null renal cancer cell line and
regulates expression of key molecules in TGF-beta signaling. Mol
Cancer. 9(160)2010.PubMed/NCBI View Article : Google Scholar
|
45
|
Chen B, Athanasiou M, Gu Q and Blair DG:
Drm/Gremlin transcriptionally activates p21(Cip1) via a novel
mechanism and inhibits neoplastic transformation. Biochem Biophys
Res Commun. 295:1135–1141. 2002.PubMed/NCBI View Article : Google Scholar
|
46
|
Davis JM, Cheng B, Drake MM, Yu Q, Yang B,
Li J, Liu C, Younes M, Zhao X, Bailey JM, et al: Pancreatic stromal
Gremlin 1 expression during pancreatic tumorigenesis. Genes Dis.
9:108–115. 2020.PubMed/NCBI View Article : Google Scholar
|
47
|
Yang S, Zhang Y, Hua Y, Cui M, Wang M, Gao
J, Liu Q and Liao Q: GREM1 is a novel serum diagnostic marker and
potential therapeutic target for pancreatic ductal adenocarcinoma.
Front Oncol. 12(968610)2022.PubMed/NCBI View Article : Google Scholar
|
48
|
Cheng C, Wang J, Xu P, Zhang K, Xin Z,
Zhao H, Ji Z, Zhang M, Wang D, He Y, et al: Gremlin1 is a
therapeutically targetable FGFR1 ligand that regulates lineage
plasticity and castration resistance in prostate cancer. Nat
Cancer. 3:565–580. 2022.PubMed/NCBI View Article : Google Scholar
|