Wnt signaling and tumors (Review)
- Authors:
- Huaishi Wang
- Lihai Zhang
- Chao Hu
- Hui Li
- Mingyan Jiang
-
Affiliations: Department of Pulmonary and Critical Care Medicine, Xiangtan Central Hospital, Xiangtan, Hunan 411100, P.R. China - Published online on: May 15, 2024 https://doi.org/10.3892/mco.2024.2743
- Article Number: 45
-
Copyright: © Wang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Nusse R and Varmus HE: Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell. 31:99–109. 1982.PubMed/NCBI View Article : Google Scholar | |
Johnson ML and Rajamannan N: Diseases of Wnt signaling. Rev Endocr Metab Disord. 7:41–49. 2006.PubMed/NCBI View Article : Google Scholar | |
Janda CY, Dang LT, You C, Chang J, de Lau W, Zhong ZA, Yan KS, Marecic O, Siepe D, Li X, et al: Surrogate Wnt agonists that phenocopy canonical Wnt and β-catenin signalling. Nature. 545:234–237. 2017.PubMed/NCBI View Article : Google Scholar | |
van Kappel EC and Maurice MM: Molecular regulation and pharmacological targeting of the β-catenin destruction complex. Br J Pharmacol. 174:4575–4588. 2017.PubMed/NCBI View Article : Google Scholar | |
Huang P, Yan R, Zhang X, Wang L, Ke X and Qu Y: Activating Wnt/β-catenin signaling pathway for disease therapy: Challenges and opportunities. Pharmacol Ther. 196:79–90. 2019.PubMed/NCBI View Article : Google Scholar | |
Wang D, Zhang Q, Li F, Wang C and Yang C: β-TrCP-mediated ubiquitination and degradation of Dlg5 regulates hepatocellular carcinoma cell proliferation. Cancer Cell Int. 19(298)2019.PubMed/NCBI View Article : Google Scholar | |
Lin CH, Ji T, Chen CF and Hoang BH: Wnt signaling in osteosarcoma. Adv Exp Med Biol. 804:33–45. 2014.PubMed/NCBI View Article : Google Scholar | |
Kohn AD and Moon RT: Wnt and calcium signaling: Beta-catenin-independent pathways. Cell Calcium. 38:439–446. 2005.PubMed/NCBI View Article : Google Scholar | |
Topol L, Jiang X, Choi H, Garrett-Beal L, Carolan PJ and Yang Y: Wnt-5a inhibits the canonical Wnt pathway by promoting GSK-3-independent beta-catenin degradation. J Cell Biol. 162:899–908. 2003.PubMed/NCBI View Article : Google Scholar | |
Krishnamurthy N and Kurzrock R: Targeting the Wnt/beta-catenin pathway in cancer: Update on effectors and inhibitors. Cancer Treat Rev. 62:50–60. 2018.PubMed/NCBI View Article : Google Scholar | |
Lemjabbar-Alaoui H, Dasari V, Sidhu SS, Mengistab A, Finkbeiner W, Gallup M and Basbaum C: Wnt and Hedgehog are critical mediators of cigarette smoke-induced lung cancer. PLoS One. 1(e93)2006.PubMed/NCBI View Article : Google Scholar | |
Pacheco-Pinedo EC, Durham AC, Stewart KM, Goss AM, Lu MM, Demayo FJ and Morrisey EE: Wnt/β-catenin signaling accelerates mouse lung tumorigenesis by imposing an embryonic distal progenitor phenotype on lung epithelium. J Clin Invest. 121:1935–1945. 2011.PubMed/NCBI View Article : Google Scholar | |
Kren L, Hermanová M, Goncharuk VN, Kaur P, Ross JS, Pavlovský Z and Dvorák K: Downregulation of plasma membrane expression/cytoplasmic accumulation of beta-catenin predicts shortened survival in non-small cell lung cancer. A clinicopathologic study of 100 cases. Cesk Patol. 39:17–20. 2003.PubMed/NCBI | |
Huang CL, Liu D, Ishikawa S, Nakashima T, Nakashima N, Yokomise H, Kadota K and Ueno M: Wnt1 overexpression promotes tumour progression in non-small cell lung cancer. Eur J Cancer. 44:2680–2688. 2008.PubMed/NCBI View Article : Google Scholar | |
Wang Y, Lei L, Zheng YW, Zhang L, Li ZH, Shen HY, Jiang GY, Zhang XP, Wang EH and Xu HT: Odd-skipped related 1 inhibits lung cancer proliferation and invasion by reducing Wnt signaling through the suppression of SOX9 and β-catenin. Cancer Sci. 109:1799–1810. 2018.PubMed/NCBI View Article : Google Scholar | |
Nakashima N, Huang CL, Liu D, Ueno M and Yokomise H: Intratumoral Wnt1 expression affects survivin gene expression in non-small cell lung cancer. Int J Oncol. 37:687–694. 2010.PubMed/NCBI View Article : Google Scholar | |
Winn RA, Marek L, Han SY, Rodriguez K, Rodriguez N, Hammond M, Van Scoyk M, Acosta H, Mirus J, Barry N, et al: Restoration of Wnt-7a expression reverses non-small cell lung cancer cellular transformation through frizzled-9-mediated growth inhibition and promotion of cell differentiation. J Biol Chem. 280:19625–19634. 2005.PubMed/NCBI View Article : Google Scholar | |
Wei Q, Zhao Y, Yang ZQ, Dong QZ, Dong XJ, Han Y, Zhao C and Wang EH: Dishevelled family proteins are expressed in non-small cell lung cancer and function differentially on tumor progression. Lung Cancer. 62:181–192. 2008.PubMed/NCBI View Article : Google Scholar | |
Liu Y, Dong QZ, Wang S, Fang CQ, Miao Y, Wang L, Li MZ and Wang EH: Abnormal expression of Pygopus 2 correlates with a malignant phenotype in human lung cancer. BMC Cancer. 13(346)2013.PubMed/NCBI View Article : Google Scholar | |
Khalaf AM, Fuentes D, Morshid AI, Burke MR, Kaseb AO, Hassan M, Hazle JD and Elsayes KM: Role of Wnt/β-catenin signaling in hepatocellular carcinoma, pathogenesis, and clinical significance. J Hepatocell Carcinoma. 5:61–73. 2018.PubMed/NCBI View Article : Google Scholar | |
Flanagan DJ and Vincan E: Wnt signaling in cancer: Not a binary On:Off switch. Cancer Res. 79:5901–5906. 2019.PubMed/NCBI View Article : Google Scholar | |
Christie M, Jorissen RN, Mouradov D, Sakthianandeswaren A, Li S, Day F, Tsui C, Lipton L, Desai J, Jones IT, et al: Different APC genotypes in proximal and distal sporadic colorectal cancers suggest distinct WNT/β-catenin signalling thresholds for tumourigenesis. Oncogene. 32:4675–4682. 2013.PubMed/NCBI View Article : Google Scholar | |
Russell JO and Monga SP: Wnt/β-catenin signaling in liver development, homeostasis, and pathobiology. Annu Rev Pathol. 13:351–378. 2018.PubMed/NCBI View Article : Google Scholar | |
Molaei F, Forghanifard MM, Fahim Y and Abbaszadegan MR: Molecular signaling in tumorigenesis of gastric cancer. Iran Biomed J. 22:217–230. 2018.PubMed/NCBI View Article : Google Scholar | |
Toyama T, Lee HC, Koga H, Wands JR and Kim M: Noncanonical Wnt11 inhibits hepatocellular carcinoma cell proliferation and migration. Mol Cancer Res. 8:254–265. 2010.PubMed/NCBI View Article : Google Scholar | |
Yuzugullu H, Benhaj K, Ozturk N, Senturk S, Celik E, Toylu A, Tasdemir N, Yilmaz M, Erdal E, Akcali KC, et al: Canonical Wnt signaling is antagonized by noncanonical Wnt5a in hepatocellular carcinoma cells. Mol Cancer. 8(90)2009.PubMed/NCBI View Article : Google Scholar | |
Cheng XX, Wang ZC, Chen XY, Sun Y, Kong QY, Liu J and Li H: Correlation of Wnt-2 expression and beta-catenin intracellular accumulation in Chinese gastric cancers: relevance with tumour dissemination. Cancer Lett. 223:339–347. 2005.PubMed/NCBI View Article : Google Scholar | |
Bhattacharya I, Barman N, Maiti M and Sarkar R: Assessment of beta-catenin expression by immunohistochemistry in colorectal neoplasms and its role as an additional prognostic marker in colorectal adenocarcinoma. Med Pharm Rep. 92:246–252. 2019.PubMed/NCBI View Article : Google Scholar | |
Kirikoshi H, Sekihara H and Katoh M: Up-regulation of WNT10A by tumor necrosis factor alpha and Helicobacter pylori in gastric cancer. Int J Oncol. 19:533–536. 2001.PubMed/NCBI | |
Li Q, Lai Q, He C, Fang Y, Yan Q, Zhang Y, Wang X, Gu C, Wang Y, Ye L, et al: RUNX1 promotes tumour metastasis by activating the Wnt/β-catenin signalling pathway and EMT in colorectal cancer. J Exp Clin Cancer Res. 38(334)2019.PubMed/NCBI View Article : Google Scholar | |
Xu X, Zhang M, Xu F and Jiang S: Wnt signaling in breast cancer: Biological mechanisms, challenges and opportunities. Mol Cancer. 19(165)2020.PubMed/NCBI View Article : Google Scholar | |
Wu R, Zhai Y, Fearon ER and Cho KR: Diverse mechanisms of beta-catenin deregulation in ovarian endometrioid adenocarcinomas. Cancer Res. 61:8247–8255. 2001.PubMed/NCBI | |
Yang L, Wu X, Wang Y, Zhang K, Wu J, Yuan YC, Deng X, Chen L, Kim CCH, Lau S, et al: FZD7 has a critical role in cell proliferation in triple negative breast cancer. Oncogene. 30:4437–4446. 2011.PubMed/NCBI View Article : Google Scholar | |
Yoshioka S, King ML, Ran S, Okuda H, MacLean JA II, McAsey ME, Sugino N, Brard L, Watabe K and Hayashi K: WNT7A regulates tumor growth and progression in ovarian cancer through the WNT/β-catenin pathway. Mol Cancer Res. 10:469–482. 2012.PubMed/NCBI View Article : Google Scholar | |
Badiglian Filho L, Oshima CT, De Oliveira Lima F, De Oliveira Costa H, De Sousa Damião R, Gomes TS and Gonçalves WJ: Canonical and noncanonical Wnt pathway: A comparison among normal ovary, benign ovarian tumor and ovarian cancer. Oncol Rep. 21:313–320. 2009.PubMed/NCBI | |
Ahmed N, Abubaker K and Findlay JK: Ovarian cancer stem cells: Molecular concepts and relevance as therapeutic targets. Mol Aspects Med. 39:110–125. 2014.PubMed/NCBI View Article : Google Scholar | |
Mao J, Fan S, Ma W, Fan P, Wang B, Zhang J, Wang H, Tang B, Zhang Q, Yu X, et al: Roles of Wnt/β-catenin signaling in the gastric cancer stem cells proliferation and salinomycin treatment. Cell Death Dis. 5(e1039)2014.PubMed/NCBI View Article : Google Scholar | |
Whissell G, Montagni E, Martinelli P, Hernando-Momblona X, Sevillano M, Jung P, Cortina C, Calon A, Abuli A, Castells A, et al: The transcription factor GATA6 enables self-renewal of colon adenoma stem cells by repressing BMP gene expression. Nat Cell Biol. 16:695–707. 2014.PubMed/NCBI View Article : Google Scholar | |
Zhu L, Pan R, Zhou D, Ye G and Tan W: BCL11A enhances stemness and promotes progression by activating Wnt/β-catenin signaling in breast cancer. Cancer Manag Res. 11:2997–3007. 2019.PubMed/NCBI View Article : Google Scholar | |
Chaudhary S, Islam Z, Mishra V, Rawat S, Ashraf GM and Kolatkar PR: Sox2: A regulatory factor in tumorigenesis and metastasis. Curr Protein Pept Sci. 20:495–504. 2019.PubMed/NCBI View Article : Google Scholar | |
Lin S, Zhen Y, Guan Y and Yi H: Roles of Wnt/β-catenin signaling pathway regulatory long non-coding RNAs in the pathogenesis of non-small cell lung cancer. Cancer Manag Res. 12:4181–4191. 2020.PubMed/NCBI View Article : Google Scholar | |
Teng Y, Wang X, Wang Y and Ma D: Wnt/beta-catenin signaling regulates cancer stem cells in lung cancer A549 cells. Biochem Biophys Res Commun. 392:373–379. 2010.PubMed/NCBI View Article : Google Scholar | |
Jung DH, Bae YJ, Kim JH, Shin YK and Jeung HC: HER2 regulates cancer stem cell activities via the Wnt signaling pathway in gastric cancer cells. Oncology. 97:311–318. 2019.PubMed/NCBI View Article : Google Scholar | |
Akrami H, Mehdizadeh K, Moradi B, Borzabadi Farahani D, Mansouri K and Ghalib Ibraheem Alnajar S: PlGF knockdown induced apoptosis through Wnt signaling pathway in gastric cancer stem cells. J Cell Biochem. 120:3268–3276. 2019.PubMed/NCBI View Article : Google Scholar | |
Gao Y, Cai A, Xi H, Li J, Xu W, Zhang Y, Zhang K, Cui J, Wu X, Wei B and Chen L: Ring finger protein 43 associates with gastric cancer progression and attenuates the stemness of gastric cancer stem-like cells via the Wnt-β/catenin signaling pathway. Stem Cell Res Ther. 8(98)2017.PubMed/NCBI View Article : Google Scholar | |
Song H, Shi L, Xu Y, Xu T, Fan R, Cao M, Xu W and Song J: BRD4 promotes the stemness of gastric cancer cells via attenuating miR-216a-3p-mediated inhibition of Wnt/β-catenin signaling. Eur J Pharmacol. 852:189–197. 2019.PubMed/NCBI View Article : Google Scholar | |
Zhao H, Han R, Wang Z, Xian J and Bai X: Colorectal cancer stem cells and targeted agents. Pharmaceutics. 15(2763)2023.PubMed/NCBI View Article : Google Scholar | |
D'Antonio L, Fieni C, Ciummo SL, Vespa S, Lotti L, Sorrentino C and Di Carlo E: Inactivation of interleukin-30 in colon cancer stem cells via CRISPR/Cas9 genome editing inhibits their oncogenicity and improves host survival. J Immunother Cancer. 11(e006056)2023.PubMed/NCBI View Article : Google Scholar | |
Liao W, Zhang L, Chen X, Xiang J, Zheng Q, Chen N, Zhao M, Zhang G, Xiao X, Zhou G, et al: Targeting cancer stem cells and signalling pathways through phytochemicals: A promising approach against colorectal cancer. Phytomedicine. 108(154524)2023.PubMed/NCBI View Article : Google Scholar | |
Hatano Y, Fukuda S, Hisamatsu K, Hirata A, Hara A and Tomita H: Multifaceted interpretation of colon cancer stem cells. Int J Mol Sci. 18(1446)2017.PubMed/NCBI View Article : Google Scholar | |
Singh S, Arcaroli J, Chen Y, Thompson DC, Messersmith W, Jimeno A and Vasiliou V: ALDH1B1 is crucial for colon tumorigenesis by modulating Wnt/β-catenin, notch and PI3K/Akt signaling pathways. PLoS One. 10(e0121648)2015.PubMed/NCBI View Article : Google Scholar | |
Hirata A, Utikal J, Yamashita S, Aoki H, Watanabe A, Yamamoto T, Okano H, Bardeesy N, Kunisada T, Ushijima T, et al: Dose-dependent roles for canonical Wnt signalling in de novo crypt formation and cell cycle properties of the colonic epithelium. Development. 140:66–75. 2013.PubMed/NCBI View Article : Google Scholar | |
Ordóñez-Morán P, Dafflon C, Imajo M, Nishida E and Huelsken J: HOXA5 counteracts stem cell traits by inhibiting wnt signaling in colorectal cancer. Cancer Cell. 28:815–829. 2015.PubMed/NCBI View Article : Google Scholar | |
Khaled WT, Choon Lee S, Stingl J, Chen X, Raza Ali H, Rueda OM, Hadi F, Wang J, Yu Y, Chin SF, et al: BCL11A is a triple-negative breast cancer gene with critical functions in stem and progenitor cells. Nat Commun. 6(5987)2015.PubMed/NCBI View Article : Google Scholar | |
Yue Z, Yuan Z, Zeng L, Wang Y, Lai L, Li J, Sun P, Xue X, Qi J, Yang Z, et al: LGR4 modulates breast cancer initiation, metastasis, and cancer stem cells. FASEB J. 32:2422–2437. 2018.PubMed/NCBI View Article : Google Scholar | |
Satriyo PB, Bamodu OA, Chen JH, Aryandono T, Haryana SM, Yeh CT and Chao TY: Cadherin 11 inhibition downregulates β-catenin, deactivates the canonical WNT signalling pathway and suppresses the cancer stem cell-like phenotype of triple negative breast cancer. J Clin Med. 8(148)2019.PubMed/NCBI View Article : Google Scholar | |
Nguyen VHL, Hough R, Bernaudo S and Peng C: Wnt/β-catenin signalling in ovarian cancer: Insights into its hyperactivation and function in tumorigenesis. J Ovarian Res. 12(122)2019.PubMed/NCBI View Article : Google Scholar | |
Condello S, Morgan CA, Nagdas S, Cao L, Turek J, Hurley TD and Matei D: β-Catenin-regulated ALDH1A1 is a target in ovarian cancer spheroids. Oncogene. 34:2297–2308. 2015.PubMed/NCBI View Article : Google Scholar | |
Wu G, Liu A, Zhu J, Lei F, Wu S, Zhang X, Ye L, Cao L and He S: MiR-1207 overexpression promotes cancer stem cell-like traits in ovarian cancer by activating the Wnt/β-catenin signaling pathway. Oncotarget. 6:28882–28894. 2015.PubMed/NCBI View Article : Google Scholar | |
Kalluri R and Weinberg RA: The basics of epithelial-mesenchymal transition. J Clin Invest. 119:1420–1428. 2009.PubMed/NCBI View Article : Google Scholar | |
Rapp J, Jaromi L, Kvell K, Miskei G and Pongracz JE: WNT signaling-lung cancer is no exception. Respir Res. 18(167)2017.PubMed/NCBI View Article : Google Scholar | |
Yang S, Liu Y, Li MY, Ng CSH, Yang SL, Wang S, Zou C, Dong Y, Du J, Long X, et al: FOXP3 promotes tumor growth and metastasis by activating Wnt/β-catenin signaling pathway and EMT in non-small cell lung cancer. Mol Cancer. 16(124)2017.PubMed/NCBI View Article : Google Scholar | |
Pan J, Fang S, Tian H, Zhou C, Zhao X, Tian H, He J, Shen W, Meng X, Jin X and Gong Z: lncRNA JPX/miR-33a-5p/Twist1 axis regulates tumorigenesis and metastasis of lung cancer by activating Wnt/β-catenin signaling. Mol Cancer. 19(9)2020.PubMed/NCBI View Article : Google Scholar | |
Li Y, Chen F, Shen W, Li B, Xiang R, Qu L, Zhang C, Li G, Xie H, Katanaev VL and Jia L: WDR74 induces nuclear β-catenin accumulation and activates Wnt-responsive genes to promote lung cancer growth and metastasis. Cancer Lett. 471:103–115. 2020.PubMed/NCBI View Article : Google Scholar | |
Qi H, Wang S, Wu J, Yang S, Gray S, Ng CSH, Du J, Underwood MJ, Li MY and Chen GG: EGFR-AS1/HIF2A regulates the expression of FOXP3 to impact the cancer stemness of smoking-related non-small cell lung cancer. Ther Adv Med Oncol. 11(1758835919855228)2019.PubMed/NCBI View Article : Google Scholar | |
Tian S, Peng P, Li J, Deng H, Zhan N, Zeng Z and Dong W: SERPINH1 regulates EMT and gastric cancer metastasis via the Wnt/β-catenin signaling pathway. Aging (Albany NY). 12:3574–3593. 2020.PubMed/NCBI View Article : Google Scholar | |
Wang H, Wu M, Lu Y, He K, Cai X, Yu X, Lu J and Teng L: LncRNA MIR4435-2HG targets desmoplakin and promotes growth and metastasis of gastric cancer by activating Wnt/β-catenin signaling. Aging (Albany NY). 11:6657–6673. 2019.PubMed/NCBI View Article : Google Scholar | |
Luo Y, Tan W, Jia W, Liu Z, Ye P, Fu Z, Lu F, Xiang W, Tang L, Yao L, et al: The long non-coding RNA LINC01606 contributes to the metastasis and invasion of human gastric cancer and is associated with Wnt/β-catenin signaling. Int J Biochem Cell Biol. 103:125–134. 2018.PubMed/NCBI View Article : Google Scholar | |
Gao J, Zhao C, Liu Q, Hou X, Li S, Xing X, Yang C and Luo Y: Cyclin G2 suppresses Wnt/β-catenin signaling and inhibits gastric cancer cell growth and migration through Dapper1. J Exp Clin Cancer Res. 37(317)2018.PubMed/NCBI View Article : Google Scholar | |
Ge Q, Hu Y, He J, Chen F, Wu L, Tu X, Qi Y, Zhang Z, Xue M, Chen S, et al: Zic1 suppresses gastric cancer metastasis by regulating Wnt/β-catenin signaling and epithelial-mesenchymal transition. FASEB J. 34:2161–2172. 2020.PubMed/NCBI View Article : Google Scholar | |
Chung MT, Lai HC, Sytwu HK, Yan MD, Shih YL, Chang CC, Yu MH, Liu HS, Chu DW and Lin YW: SFRP1 and SFRP2 suppress the transformation and invasion abilities of cervical cancer cells through Wnt signal pathway. Gynecol Oncol. 112:646–653. 2009.PubMed/NCBI View Article : Google Scholar | |
Zhang LZ, Huang LY, Huang AL, Liu JX and Yang F: CRIP1 promotes cell migration, invasion and epithelial-mesenchymal transition of cervical cancer by activating the Wnt/β-catenin signaling pathway. Life Sci. 207:420–427. 2018.PubMed/NCBI View Article : Google Scholar | |
Harper KL, Sosa MS, Entenberg D, Hosseini H, Cheung JF, Nobre R, Avivar-Valderas A, Nagi C, Girnius N, Davis RJ, et al: Mechanism of early dissemination and metastasis in Her2+ mammary cancer. Nature. 540:588–592. 2016.PubMed/NCBI View Article : Google Scholar | |
Kenny HA and Lengyel E: MMP-2 functions as an early response protein in ovarian cancer metastasis. Cell Cycle. 8:683–688. 2009.PubMed/NCBI View Article : Google Scholar | |
Vasan N, Baselga J and Hyman DM: A view on drug resistance in cancer. Nature. 575:299–309. 2019.PubMed/NCBI View Article : Google Scholar | |
Stewart DJ: Wnt signaling pathway in non-small cell lung cancer. J Natl Cancer Inst. 106(djt356)2014.PubMed/NCBI View Article : Google Scholar | |
Zhong Z and Virshup DM: Wnt signaling and drug resistance in cancer. Mol Pharmacol. 97:72–89. 2020.PubMed/NCBI View Article : Google Scholar | |
Geng P, Zhao J, Li Q, Wang X, Qin W, Wang T, Shi X, Liu X, Chen J, Qiu H and Xu G: Z-Ligustilide combined with cisplatin reduces PLPP1-mediated phospholipid synthesis to impair cisplatin resistance in lung cancer. Int J Mol Sci. 24(17046)2023.PubMed/NCBI View Article : Google Scholar | |
Gao Y, Liu Z, Zhang X, He J, Pan Y, Hao F, Xie L, Li Q, Qiu X and Wang E: Inhibition of cytoplasmic GSK-3β increases cisplatin resistance through activation of Wnt/β-catenin signaling in A549/DDP cells. Cancer Lett. 336:231–239. 2013.PubMed/NCBI View Article : Google Scholar | |
Xie C, Pan Y, Hao F, Gao Y, Liu Z, Zhang X, Xie L, Jiang G, Li Q and Wang E: C-Myc participates in β-catenin-mediated drug resistance in A549/DDP lung adenocarcinoma cells. APMIS. 122:1251–1258. 2014.PubMed/NCBI View Article : Google Scholar | |
Fang X, Gu P, Zhou C, Liang A, Ren S, Liu F, Zeng Y, Wu Y, Zhao Y, Huang B, et al: β-Catenin overexpression is associated with gefitinib resistance in non-small cell lung cancer cells. Pulm Pharmacol Ther. 28:41–48. 2014.PubMed/NCBI View Article : Google Scholar | |
Lee SB, Gong YD, Park YI and Dong MS: 2,3,6-Trisubstituted quinoxaline derivative, a small molecule inhibitor of the Wnt/beta-catenin signaling pathway, suppresses cell proliferation and enhances radiosensitivity in A549/Wnt2 cells. Biochem Biophys Res Commun. 431:746–752. 2013.PubMed/NCBI View Article : Google Scholar | |
Wang HQ, Xu ML, Ma J, Zhang Y and Xie CH: Frizzled-8 as a putative therapeutic target in human lung cancer. Biochem Biophys Res Commun. 417:62–66. 2012.PubMed/NCBI View Article : Google Scholar | |
Wang X, Lu B, Dai C, Fu Y, Hao K, Zhao B, Chen Z and Fu L: Caveolin-1 promotes chemoresistance of gastric cancer cells to cisplatin by activating WNT/β-catenin pathway. Front Oncol. 10(46)2020.PubMed/NCBI View Article : Google Scholar | |
Chi HC, Tsai CY, Wang CS, Yang HY, Lo CH, Wang WJ, Lee KF, Lai LY, Hong JH, Chang YF, et al: DOCK6 promotes chemo- and radioresistance of gastric cancer by modulating WNT/β-catenin signaling and cancer stem cell traits. Oncogene. 39:5933–5949. 2020.PubMed/NCBI View Article : Google Scholar | |
Liu Y, Chen H, Zheng P, Zheng Y, Luo Q, Xie G, Ma Y and Shen L: ICG-001 suppresses growth of gastric cancer cells and reduces chemoresistance of cancer stem cell-like population. J Exp Clin Cancer Res. 36(125)2017.PubMed/NCBI View Article : Google Scholar | |
Cheng C, Qin Y, Zhi Q, Wang J and Qin C: Knockdown of long non-coding RNA HOTAIR inhibits cisplatin resistance of gastric cancer cells through inhibiting the PI3K/Akt and Wnt/β-catenin signaling pathways by up-regulating miR-34a. Int J Biol Macromol. 107:2620–2629. 2018.PubMed/NCBI View Article : Google Scholar | |
Wang B, Guan G and Zhao D: Silence of FAM83H-AS1 promotes chemosensitivity of gastric cancer through Wnt/β-catenin signaling pathway. Biomed Pharmacother. 125(109961)2020.PubMed/NCBI View Article : Google Scholar | |
Yang W, Wu B, Ma N, Wang Y, Guo J, Zhu J and Zhao S: BATF2 reverses multidrug resistance of human gastric cancer cells by suppressing Wnt/β-catenin signaling. In Vitro Cell Dev Biol Anim. 55:445–452. 2019.PubMed/NCBI View Article : Google Scholar | |
Zhang ZM, Wu JF, Luo QC, Liu QF, Wu QW, Ye GD, She HQ and Li BA: Pygo2 activates MDR1 expression and mediates chemoresistance in breast cancer via the Wnt/β-catenin pathway. Oncogene. 35:4787–4797. 2016.PubMed/NCBI View Article : Google Scholar | |
Wang Z, Wang N, Li W, Liu P, Chen Q, Situ H, Zhong S, Guo L, Lin Y, Shen J and Chen J: Caveolin-1 mediates chemoresistance in breast cancer stem cells via β-catenin/ABCG2 signaling pathway. Carcinogenesis. 35:2346–2356. 2014.PubMed/NCBI View Article : Google Scholar | |
Loh YN, Hedditch EL, Baker LA, Jary E, Ward RL and Ford CE: The Wnt signalling pathway is upregulated in an in vitro model of acquired tamoxifen resistant breast cancer. BMC Cancer. 13(174)2013.PubMed/NCBI View Article : Google Scholar | |
Cheng S, Huang Y, Lou C, He Y, Zhang Y and Zhang Q: FSTL1 enhances chemoresistance and maintains stemness in breast cancer cells via integrin β3/Wnt signaling under miR-137 regulation. Cancer Biol Ther. 20:328–337. 2019.PubMed/NCBI View Article : Google Scholar | |
Bi Z, Li Q, Dinglin X, Xu Y, You K, Hong H, Hu Q, Zhang W, Li C, Tan Y, et al: Nanoparticles (NPs)-meditated LncRNA AFAP1-AS1 silencing to block Wnt/β-catenin signaling pathway for synergistic reversal of radioresistance and effective cancer radiotherapy. Adv Sci (Weinh). 7(2000915)2020.PubMed/NCBI View Article : Google Scholar | |
Chau WK, Ip CK, Mak ASC, Lai HC and Wong AST: c-Kit mediates chemoresistance and tumor-initiating capacity of ovarian cancer cells through activation of Wnt/β-catenin-ATP-binding cassette G2 signaling. Oncogene. 32:2767–2781. 2013.PubMed/NCBI View Article : Google Scholar | |
Nagaraj AB, Joseph P, Kovalenko O, Singh S, Armstrong A, Redline R, Resnick K, Zanotti K, Waggoner S and DiFeo A: Critical role of Wnt/β-catenin signaling in driving epithelial ovarian cancer platinum resistance. Oncotarget. 6:23720–23734. 2015.PubMed/NCBI View Article : Google Scholar | |
Chiu WT, Huang YF, Tsai HY, Chen CC, Chang CH, Huang SC, Hsu KF and Chou CY: FOXM1 confers to epithelial-mesenchymal transition, stemness and chemoresistance in epithelial ovarian carcinoma cells. Oncotarget. 6:2349–2365. 2015.PubMed/NCBI View Article : Google Scholar | |
Mariya T, Hirohashi Y, Torigoe T, Tabuchi Y, Asano T, Saijo H, Kuroda T, Yasuda K, Mizuuchi M, Saito T and Sato N: Matrix metalloproteinase-10 regulates stemness of ovarian cancer stem-like cells by activation of canonical Wnt signaling and can be a target of chemotherapy-resistant ovarian cancer. Oncotarget. 7:26806–26822. 2016.PubMed/NCBI View Article : Google Scholar | |
Zhang Y, Liu B, Zhao Q, Hou T and Huang X: Nuclear localizaiton of β-catenin is associated with poor survival and chemo-/radioresistance in human cervical squamous cell cancer. Int J Clin Exp Pathol. 7:3908–3917. 2014.PubMed/NCBI | |
Zhou S, Bai ZL, Xia D, Zhao ZJ, Zhao R and Wang YY: FTO regulates the chemo-radiotherapy resistance of cervical squamous cell carcinoma (CSCC) by targeting β-catenin through mRNA demethylation. Mol Carcinog. 57:590–597. 2018.PubMed/NCBI View Article : Google Scholar | |
Xu H, Wang Z, Xu L, Mo G, Duan G, Wang Y, Sun Z and Chen H: Targeting the eIF4E/β-catenin axis sensitizes cervical carcinoma squamous cells to chemotherapy. Am J Transl Res. 9:1203–1212. 2017.PubMed/NCBI | |
Cao HZ, Liu XF, Yang WT, Chen Q and Zheng PS: LGR5 promotes cancer stem cell traits and chemoresistance in cervical cancer. Cell Death Dis. 8(e3039)2017.PubMed/NCBI View Article : Google Scholar | |
Joyce JA and Fearon DT: T cell exclusion, immune privilege, and the tumor microenvironment. Science. 348:74–80. 2015.PubMed/NCBI View Article : Google Scholar | |
Chen DS and Mellman I: Oncology meets immunology: The cancer-immunity cycle. Immunity. 39:1–10. 2013.PubMed/NCBI View Article : Google Scholar | |
Pai SG, Carneiro BA, Mota JM, Costa R, Leite CA, Barroso-Sousa R, Kaplan JB, Chae YK and Giles FJ: Wnt/beta-catenin pathway: Modulating anticancer immune response. J Hematol Oncol. 10(101)2017.PubMed/NCBI View Article : Google Scholar | |
Ganesh S, Shui X, Craig KP, Park J, Wang W, Brown BD and Abrams MT: RNAi-mediated β-catenin inhibition promotes T cell infiltration and antitumor activity in combination with immune checkpoint blockade. Mol Ther. 26:2567–2579. 2018.PubMed/NCBI View Article : Google Scholar | |
Luke JJ, Bao R, Sweis RF, Spranger S and Gajewski TF: WNT/β-catenin pathway activation correlates with immune exclusion across human cancers. Clin Cancer Res. 25:3074–3083. 2019.PubMed/NCBI View Article : Google Scholar | |
Kerdidani D, Chouvardas P, Arjo AR, Giopanou I, Ntaliarda G, Guo YA, Tsikitis M, Kazamias G, Potaris K, Stathopoulos GT, et al: Wnt1 silences chemokine genes in dendritic cells and induces adaptive immune resistance in lung adenocarcinoma. Nat Commun. 10(1405)2019.PubMed/NCBI View Article : Google Scholar | |
Bergenfelz C, Janols H, Wullt M, Jirström K, Bredberg A and Leandersson K: Wnt5a inhibits human monocyte-derived myeloid dendritic cell generation. Scand J Immunol. 78:194–204. 2013.PubMed/NCBI View Article : Google Scholar | |
Diamond MS, Kinder M, Matsushita H, Mashayekhi M, Dunn GP, Archambault JM, Lee H, Arthur CD, White JM, Kalinke U, et al: Type I interferon is selectively required by dendritic cells for immune rejection of tumors. J Exp Med. 208:1989–2003. 2011.PubMed/NCBI View Article : Google Scholar | |
Sharma P, Hu-Lieskovan S, Wargo JA and Ribas A: Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell. 168:707–723. 2017.PubMed/NCBI View Article : Google Scholar | |
Gattinoni L, Ji Y and Restifo NP: Wnt/beta-catenin signaling in T-cell immunity and cancer immunotherapy. Clin Cancer Res. 16:4695–4701. 2010.PubMed/NCBI View Article : Google Scholar | |
Schinzari V, Timperi E, Pecora G, Palmucci F, Gallerano D, Grimaldi A, Covino DA, Guglielmo N, Melandro F, Manzi E, et al: Wnt3a/β-catenin signaling conditions differentiation of partially exhausted T-effector cells in human cancers. Cancer Immunol Res. 6:941–952. 2018.PubMed/NCBI View Article : Google Scholar | |
Wang B, Tian T, Kalland KH, Ke X and Qu Y: Targeting Wnt/β-catenin signaling for cancer immunotherapy. Trends Pharmacol Sci. 39:648–658. 2018.PubMed/NCBI View Article : Google Scholar | |
Sun X, Liu S, Wang D, Zhang Y, Li W, Guo Y, Zhang H and Suo J: Colorectal cancer cells suppress CD4+ T cells immunity through canonical Wnt signaling. Oncotarget. 8:15168–15181. 2017.PubMed/NCBI View Article : Google Scholar | |
Lengfeld JE, Lutz SE, Smith JR, Diaconu C, Scott C, Kofman SB, Choi C, Walsh CM, Raine CS, Agalliu I and Agalliu D: Endothelial Wnt/β-catenin signaling reduces immune cell infiltration in multiple sclerosis. Proc Natl Acad Sci USA. 114:E1168–E1177. 2017.PubMed/NCBI View Article : Google Scholar | |
Xu P, Xi Y, Kim JW, Zhu J, Zhang M, Xu M, Ren S, Yang D, Ma X and Xie W: Sulfation of chondroitin and bile acids converges to antagonize Wnt/β-catenin signaling and inhibit APC deficiency-induced gut tumorigenesis. Acta Pharm Sin B. 14:1241–1256. 2024.PubMed/NCBI View Article : Google Scholar | |
Hussain T, Alafnan A, Almazni IA, Helmi N, Moin A, Baeissa HM, Awadelkareem AM, Elkhalifa AO, Bakhsh T, Alzahrani A, et al: Aloe-emodin exhibits growth-suppressive effects on androgen-independent human prostate cancer DU145 cells via inhibiting the Wnt/β-catenin signaling pathway: An in vitro and in silico study. Front Pharmacol. 14(1325184)2024.PubMed/NCBI View Article : Google Scholar | |
Suryawanshi A, Hussein MS, Prasad PD and Manicassamy S: Wnt signaling cascade in dendritic cells and regulation of anti-tumor immunity. Front Immunol. 11(122)2020.PubMed/NCBI View Article : Google Scholar | |
Haseeb M, Pirzada RH, Ain QU and Choi S: Wnt signaling in the regulation of immune cell and cancer therapeutics. Cells. 8(1380)2019.PubMed/NCBI View Article : Google Scholar | |
Zhan T, Rindtorff N and Boutros M: Wnt signaling in cancer. Oncogene. 36:1461–1473. 2017.PubMed/NCBI View Article : Google Scholar | |
He B, You L, Uematsu K, Xu Z, Lee AY, Matsangou M, McCormick F and Jablons DM: A monoclonal antibody against Wnt-1 induces apoptosis in human cancer cells. Neoplasia. 6:7–14. 2004.PubMed/NCBI View Article : Google Scholar | |
Bravo DT, Yang YL, Kuchenbecker K, Hung MS, Xu Z, Jablons DM and You L: Frizzled-8 receptor is activated by the Wnt-2 ligand in non-small cell lung cancer. BMC Cancer. 13(316)2013.PubMed/NCBI View Article : Google Scholar | |
Huang Y, Liu G, Zhang B, Xu G, Xiong W and Yang H: Wnt-5a regulates proliferation in lung cancer cells. Oncol Rep. 23:177–181. 2010.PubMed/NCBI | |
Dotan E, Cardin DB, Lenz HJ, Messersmith W, O'Neil B, Cohen SJ, Denlinger CS, Shahda S, Astsaturov I, Kapoun AM, et al: Phase Ib study of Wnt inhibitor ipafricept with gemcitabine and nab-paclitaxel in patients with previously untreated stage IV pancreatic cancer. Clin Cancer Res. 26:5348–5357. 2020.PubMed/NCBI View Article : Google Scholar | |
Le PN, McDermott JD and Jimeno A: Targeting the Wnt pathway in human cancers: Therapeutic targeting with a focus on OMP-54F28. Pharmacol Ther. 146:1–11. 2015.PubMed/NCBI View Article : Google Scholar | |
Taciak B, Pruszynska I, Kiraga L, Bialasek M and Krol M: Wnt signaling pathway in development and cancer. J Physiol Pharmacol. 69:185–196. 2018.PubMed/NCBI View Article : Google Scholar | |
Suryawanshi A, Tadagavadi RK, Swafford D and Manicassamy S: Modulation of inflammatory responses by Wnt/β-catenin signaling in dendritic cells: A novel immunotherapy target for autoimmunity and cancer. Front Immunol. 7(460)2016.PubMed/NCBI View Article : Google Scholar | |
Liu J, Pan S, Hsieh MH, Ng N, Sun F, Wang T, Kasibhatla S, Schuller AG, Li AG, Cheng D, et al: Targeting Wnt-driven cancer through the inhibition of Porcupine by LGK974. Proc Natl Acad Sci USA. 110:20224–20229. 2013.PubMed/NCBI View Article : Google Scholar | |
Jimeno A, Gordon M, Chugh R, Messersmith W, Mendelson D, Dupont J, Stagg R, Kapoun AM, Xu L, Uttamsingh S, et al: A first-in-human phase I study of the anticancer stem cell agent ipafricept (OMP-54F28), a decoy receptor for Wnt ligands, in patients with advanced solid tumors. Clin Cancer Res. 23:7490–7497. 2017.PubMed/NCBI View Article : Google Scholar | |
Bhamra I, Armer R, Bingham M, Eagle C, Cook A, Phillips C and Woodcock S: Abstract 3764: Porcupine inhibitor RXC004 enhances immune response in pre-clinical models of cancer. Cancer Res. 78 (Suppl 13)(S3764)2018. | |
Tabernero J, Van Cutsem E, Garralda E, Tai D, De Braud F, Geva R, van Bussel MTJ, Fiorella Dotti K, Elez E, de Miguel MJ, et al: A phase Ib/II study of WNT974 + encorafenib + cetuximab in patients with BRAF V600E-mutant KRAS wild-type metastatic colorectal cancer. Oncologist. 28:230–238. 2023.PubMed/NCBI View Article : Google Scholar | |
Goswami VG and Patel BD: Recent updates on Wnt signaling modulators: A patent review (2014-2020). Expert Opin Ther Pat. 31:1009–1043. 2021.PubMed/NCBI View Article : Google Scholar | |
Shah K, Panchal S and Patel B: Porcupine inhibitors: Novel and emerging anti-cancer therapeutics targeting the Wnt signaling pathway. Pharmacol Res. 167(105532)2021.PubMed/NCBI View Article : Google Scholar | |
Jiang X, Hao HX, Growney JD, Woolfenden S, Bottiglio C, Ng N, Lu B, Hsieh MH, Bagdasarian L, Meyer R, et al: Inactivating mutations of RNF43 confer Wnt dependency in pancreatic ductal adenocarcinoma. Proc Natl Acad Sci USA. 110:12649–12654. 2013.PubMed/NCBI View Article : Google Scholar | |
Li C, Zheng X, Han Y, Lv Y, Lan F and Zhao J: XAV939 inhibits the proliferation and migration of lung adenocarcinoma A549 cells through the WNT pathway. Oncol Lett. 15:8973–8982. 2018.PubMed/NCBI View Article : Google Scholar | |
Pan F, Shen F, Yang L, Zhang L, Guo W and Tian J: Inhibitory effects of XAV939 on the proliferation of small-cell lung cancer H446 cells and Wnt/β-catenin signaling pathway in vitro. Oncol Lett. 16:1953–1958. 2018.PubMed/NCBI View Article : Google Scholar | |
Shetti D, Zhang B, Fan C, Mo C and Lee BH: Low dose of paclitaxel combined with XAV939 attenuates metastasis, angiogenesis and growth in breast cancer by suppressing Wnt signaling. Cells. 8(892)2019.PubMed/NCBI View Article : Google Scholar | |
Arqués O, Chicote I, Puig I, Tenbaum SP, Argilés G, Dienstmann R, Fernández N, Caratù G, Matito J, Silberschmidt D, et al: Tankyrase inhibition blocks Wnt/β-catenin pathway and reverts resistance to PI3K and AKT inhibitors in the treatment of colorectal cancer. Clin Cancer Res. 22:644–656. 2016.PubMed/NCBI View Article : Google Scholar | |
Waaler J, Mygland L, Tveita A, Strand MF, Solberg NT, Olsen PA, Aizenshtadt A, Fauskanger M, Lund K, Brinch SA, et al: Tankyrase inhibition sensitizes melanoma to PD-1 immune checkpoint blockade in syngeneic mouse models. Commun Biol. 3(196)2020.PubMed/NCBI View Article : Google Scholar | |
Zhang X, Wang L and Qu Y: Targeting the β-catenin signaling for cancer therapy. Pharmacol Res. 160(104794)2020.PubMed/NCBI View Article : Google Scholar | |
Doghman M, Cazareth J and Lalli E: The T cell factor/beta-catenin antagonist PKF115-584 inhibits proliferation of adrenocortical carcinoma cells. J Clin Endocrinol Metab. 93:3222–3225. 2008.PubMed/NCBI View Article : Google Scholar | |
Gandhirajan RK, Staib PA, Minke K, Gehrke I, Plickert G, Schlösser A, Schmitt EK, Hallek M and Kreuzer KA: Small molecule inhibitors of Wnt/beta-catenin/lef-1 signaling induces apoptosis in chronic lymphocytic leukemia cells in vitro and in vivo. Neoplasia. 12:326–335. 2010.PubMed/NCBI View Article : Google Scholar | |
Wei W, Chua MS, Grepper S and So S: Small molecule antagonists of Tcf4/beta-catenin complex inhibit the growth of HCC cells in vitro and in vivo. Int J Cancer. 126:2426–2436. 2010.PubMed/NCBI View Article : Google Scholar | |
Rodon J, Argilés G, Connolly RM, Vaishampayan U, de Jonge M, Garralda E, Giannakis M, Smith DC, Dobson JR, McLaughlin ME, et al: Phase 1 study of single-agent WNT974, a first-in-class Porcupine inhibitor, in patients with advanced solid tumours. Br J Cancer. 125:28–37. 2021.PubMed/NCBI View Article : Google Scholar | |
Phillips C, Bhamra I, Eagle C, Flanagan E, Armer R, Jones CD, Bingham M, Calcraft P, Edmenson Cook A, Thompson B and Woodcock SA: The Wnt pathway inhibitor RXC004 blocks tumor growth and reverses immune evasion in Wnt ligand-dependent cancer models. Cancer Res Commun. 2:914–928. 2022.PubMed/NCBI View Article : Google Scholar |