1
|
Virani SS, Alonso A, Benjamin EJ,
Bittencourt MS, Callaway CW, Carson AP, Chamberlain AM, Chang AR,
Cheng S, Delling FN, et al: Heart disease and stroke
statistics-2020 update: A report from the american heart
association. Circulation. 141:e139–e596. 2020.PubMed/NCBI View Article : Google Scholar
|
2
|
Mathers CD and Loncar D: Projections of
global mortality and burden of disease from 2002 to 2030. PLoS Med.
3(e442)2006.PubMed/NCBI View Article : Google Scholar
|
3
|
McClellan WM and Plantinga LC: A public
health perspective on CKD and obesity. Nephrol Dial Transplant. 28
(Suppl 4):iv37–iv42. 2013.PubMed/NCBI View Article : Google Scholar
|
4
|
Baldassarre D, Castelnuovo S, Frigerio B,
Amato M, Werba JP, De Jong A, Ravani AL, Tremoli E and Sirtori CR:
Effects of timing and extent of smoking, type of cigarettes, and
concomitant risk factors on the association between smoking and
subclinical atherosclerosis. Stroke. 40:1991–1998. 2009.PubMed/NCBI View Article : Google Scholar
|
5
|
Drüeke TB and Massy ZA: Atherosclerosis in
CKD: differences from the general population. Nat Rev Nephrol.
6:723–735. 2010.PubMed/NCBI View Article : Google Scholar
|
6
|
Nilsson J, Hansson GK and Shah PK:
Immunomodulation of atherosclerosis: implications for vaccine
development. Arterioscler Thromb Vasc Biol. 25:18–28.
2005.PubMed/NCBI View Article : Google Scholar
|
7
|
Miyashita K, Lutz J, Hudgins LC, Toib D,
Ashraf AP, Song W, Murakami M, Nakajima K, Ploug M, Fong LG, et al:
Chylomicronemia from GPIHBP1 autoantibodies. J Lipid Res.
61:1365–1376. 2020.PubMed/NCBI View Article : Google Scholar
|
8
|
Obaid AH, Zografou C, Vadysirisack DD,
Munro-Sheldon B, Fichtner ML, Roy B, Philbrick WM, Bennett JL,
Nowak RJ and O'Connor KC: Heterogeneity of acetylcholine receptor
autoantibody-mediated complement activity in patients with
myasthenia gravis. Neurol Neuroimmunol Neuroinflamm.
9(e1169)2022.PubMed/NCBI View Article : Google Scholar
|
9
|
Machida T, Kubota M, Kobayashi E, Iwadate
Y, Saeki N, Yamaura A, Nomura F, Takiguchi M and Hiwasa T:
Identification of stroke-associated-antigens via screening of
recombinant proteins from the human expression cDNA library
(SEREX). J Transl Med. 13(71)2015.PubMed/NCBI View Article : Google Scholar
|
10
|
Yoshida Y, Wang H, Hiwasa T, Machida T,
Kobayashi E, Mine S, Tomiyoshi G, Nakamura R, Shinmen N, Kuroda H,
et al: Elevation of autoantibody level against PDCD11 in patients
with transient ischemic attack. Oncotarget. 9:8836–8848.
2018.PubMed/NCBI View Article : Google Scholar
|
11
|
Wang H, Zhang XM, Tomiyoshi G, Nakamura R,
Shinmen N, Kuroda H, Kimura R, Mine S, Kamitsukasa I, Wada T, et
al: Association of serum levels of antibodies against MMP1, CBX1,
and CBX5 with transient ischemic attack and cerebral infarction.
Oncotarget. 9:5600–5613. 2018.PubMed/NCBI View Article : Google Scholar
|
12
|
Yoshida Y, Zhang XM, Wang H, Machida T,
Mine S, Kobayashi E, Adachi A, Matsutani T, Kamitsukasa I, Wada T,
et al: Elevated levels of autoantibodies against DNAJC2 in sera of
patients with atherosclerotic diseases. Heliyon.
6(e04661)2020.PubMed/NCBI View Article : Google Scholar
|
13
|
Li SY, Yoshida Y, Kobayashi E, Kubota M,
Matsutani T, Mine S, Machida T, Maezawa Y, Takemoto M, Yokote K, et
al: Serum anti-AP3D1 antibodies are risk factors for acute ischemic
stroke related with atherosclerosis. Sci Rep.
11(13450)2021.PubMed/NCBI View Article : Google Scholar
|
14
|
Hiwasa T, Wang H, Goto KI, Mine S, Machida
T, Kobayashi E, Yoshida Y, Adachi A, Matsutani T, Sata M, et al:
Serum anti-DIDO1, anti-CPSF2, and anti-FOXJ2 antibodies as
predictive risk markers for acute ischemic stroke. BMC Med.
19(131)2021.PubMed/NCBI View Article : Google Scholar
|
15
|
Kubota M, Yoshida Y, Kobayashi E,
Matsutani T, Li SY, Zhang BS, Mine S, Machida T, Takizawa H, Hiwasa
T and Iwadate Y: Serum anti-SERPINE1 antibody as a potential
biomarker of acute cerebral infarction. Sci Rep.
11(21772)2021.PubMed/NCBI View Article : Google Scholar
|
16
|
Nishiura R, Fujimoto S, Sato Y, Yamada K,
Hisanaga S, Hara S, Nakao H and Kitamura K: Elevated
osteoprotegerin levels predict cardiovascular events in new
hemodialysis patients. Am J Nephrol. 29:257–263. 2009.PubMed/NCBI View Article : Google Scholar
|
17
|
Komatsu H, Fujimoto S, Hara S, Fukuda A,
Fukudome K, Yamada K, Sato Y and Kitamura K: Recent therapeutic
strategies improve renal outcome in patients with IgA nephropathy.
Am J Nephrol. 30:19–25. 2009.PubMed/NCBI View Article : Google Scholar
|
18
|
Hamanaka S, Nakagawa T, Hiwasa T, Ohta Y,
Kasamatsu S, Ishigami H, Taida T, Okimoto K, Saito K, Maruoka D, et
al: Investigation of novel biomarkers for predicting the clinical
course in patients with ulcerative colitis. J Gastroenterol
Hepatol. 33:1975–1983. 2018.PubMed/NCBI View Article : Google Scholar
|
19
|
Vermeulen N, de Béeck KO, Vermeire S, Van
Steen K, Michiels G, Ballet V, Rutgeerts P and Bossuyt X:
Identification of a novel autoantigen in inflammatory bowel disease
by protein microarray. Inflamm Bowel Dis. 17:1291–1300.
2011.PubMed/NCBI View Article : Google Scholar
|
20
|
Nakashima K, Shimada H, Ochiai T,
Kuboshima M, Kuroiwa N, Okazumi S, Matsubara H, Nomura F, Takiguchi
M and Hiwasa T: Serological identification of TROP2 by recombinant
cDNA expression cloning using sera of patients with esophageal
squamous cell carcinoma. Int J Cancer. 112:1029–1035.
2004.PubMed/NCBI View Article : Google Scholar
|
21
|
Matsutani T, Hiwasa T, Takiguchi M, Oide
T, Kunimatsu M, Saeki N and Iwadate Y: Autologous antibody to
src-homology 3-domain GRB2-like 1 specifically increases in the
sera of patients with low-grade gliomas. J Exp Clin Cancer Res.
31(85)2012.PubMed/NCBI View Article : Google Scholar
|
22
|
Li SY, Yoshida Y, Kobayashi E, Adachi A,
Hirono S, Matsutani T, Mine S, Machida T, Ohno M, Nishi E, et al:
Association between serum anti-ASXL2 antibody levels and acute
ischemic stroke, acute myocardial infarction, diabetes mellitus,
chronic kidney disease and digestive organ cancer, and their
possible association with atherosclerosis and hypertension. Int J
Mol Med. 46:1274–1288. 2020.PubMed/NCBI View Article : Google Scholar
|
23
|
Muto M, Mori M, Hiwasa T, Takiguchi M,
Iwadate Y, Uzawa A, Uchida T, Masuda H, Sugimoto K and Kuwabara S:
Novel serum autoantibodies against talin1 in multiple sclerosis:
Possible pathogenetic roles of the antibodies. J Neuroimmunol.
284:30–36. 2015.PubMed/NCBI View Article : Google Scholar
|
24
|
Gutierrez J, Turan TN, Hoh BL and
Chimowitz MI: Intracranial atherosclerotic stenosis: Risk factors,
diagnosis, and treatment. Lancet Neurol. 21:355–368.
2022.PubMed/NCBI View Article : Google Scholar
|
25
|
Crane ED, Al-Hashimi AA, Chen J, Lynn EG,
Won KD, Lhoták Š, Naeim M, Platko K, Lebeau P, Byun JH, et al:
Anti-GRP78 autoantibodies induce endothelial cell activation and
accelerate the development of atherosclerotic lesions. JCI Insight.
3(e99363)2018.PubMed/NCBI View Article : Google Scholar
|
26
|
Colafella KMM and Denton KM: Sex-specific
differences in hypertension and associated cardiovascular disease.
Nat Rev Nephrol. 14:185–201. 2018.PubMed/NCBI View Article : Google Scholar
|
27
|
Lechner K, von Schacky C, McKenzie AL,
Worm N, Nixdorff U, Lechner B, Kränkel N, Halle M, Krauss RM and
Scherr J: Lifestyle factors and high-risk atherosclerosis: pathways
and mechanisms beyond traditional risk factors. Eur J Prev Cardiol.
27:394–406. 2020.PubMed/NCBI View Article : Google Scholar
|
28
|
Matsuda H: Health risk assessment of
long-term weight history. Nihon Koshu Eisei Zasshi. 37:817–824.
1990.PubMed/NCBI
|
29
|
Nezu T, Hosomi N, Aoki S and Matsumoto M:
Carotid intima-media thickness for atherosclerosis. J Atheroscler
Thromb. 23:18–31. 2016.PubMed/NCBI View Article : Google Scholar
|
30
|
Ojima S, Kubozono T, Kawasoe S, Kawabata
T, Miyata M, Miyahara H, Maenohara S and Ohishi M: Association of
risk factors for atherosclerosis, including high-sensitivity
C-reactive protein, with carotid intima-media thickness, plaque
score, and pulse wave velocity in a male population. Hypertens Res.
43:422–430. 2020.PubMed/NCBI View Article : Google Scholar
|
31
|
Cipollone R, Ascenzi P and Visca P: Common
themes and variations in the rhodanese superfamily. IUBMB Life.
59:51–59. 2007.PubMed/NCBI View Article : Google Scholar
|
32
|
Padilla J, Jenkins NT, Thorne PK, Martin
JS, Rector RS, Davis JW and Laughlin MH: Transcriptome-wide RNA
sequencing analysis of rat skeletal muscle feed arteries. II.
Impact of exercise training in obesity. J Appl Physiol (1985).
116:1033–1047. 2014.PubMed/NCBI View Article : Google Scholar
|
33
|
Zaade D, Schmitz J, Benke E, Klare S,
Seidel K, Kirsch S, Goldin-Lang P, Zollmann FS, Unger T and
Funke-Kaiser H: Distinct signal transduction pathways downstream of
the (P)RR revealed by microarray and ChIP-chip analyses. PLoS One.
8(e57674)2013.PubMed/NCBI View Article : Google Scholar
|
34
|
Zhang Z, Chen L, Zhong J, Gao P and Oudit
GY: ACE2/Ang-(1-7) signaling and vascular remodeling. Sci China
Life Sci. 57:802–808. 2014.PubMed/NCBI View Article : Google Scholar
|
35
|
Siasos G, Tsigkou V, Kokkou E, Oikonomou
E, Vavuranakis M, Vlachopoulos C, Verveniotis A, Limperi M,
Genimata V, Papavassiliou AG, et al: Smoking and atherosclerosis:
Mechanisms of disease and new therapeutic approaches. Curr Med
Chem. 21:3936–3948. 2014.PubMed/NCBI View Article : Google Scholar
|
36
|
Witztum JL: The oxidation hypothesis of
atherosclerosis. Lancet. 344:793–795. 1994.PubMed/NCBI View Article : Google Scholar
|
37
|
Madamanchi NR, Vendrov A and Runge MS:
Oxidative stress and vascular disease. Arterioscler Thromb Vasc
Biol. 25:29–38. 2005.PubMed/NCBI View Article : Google Scholar
|
38
|
Ochoa CD, Wu RF and Terada LS: ROS
signaling and ER stress in cardiovascular disease. Mol Aspects Med.
63:18–29. 2018.PubMed/NCBI View Article : Google Scholar
|
39
|
Jha JC, Banal C, Chow BS, Cooper ME and
Jandeleit-Dahm K: Diabetes and kidney disease: Role of oxidative
stress. Antioxid Redox Signal. 25:657–684. 2016.PubMed/NCBI View Article : Google Scholar
|
40
|
Aranda-Rivera AK, Cruz-Gregorio A,
Aparicio-Trejo OE and Pedraza-Chaverri J: Mitochondrial redox
signaling and oxidative stress in kidney diseases. Biomolecules.
11(1144)2021.PubMed/NCBI View Article : Google Scholar
|
41
|
Nakajima T: Roles of sulfur metabolism and
rhodanese in detoxification and anti-oxidative stress functions in
the liver: Responses to radiation exposure. Med Sci Monit.
21:1721–1725. 2015.PubMed/NCBI View Article : Google Scholar
|
42
|
Libiad M, Motl N, Akey DL, Sakamoto N,
Fearon ER, Smith JL and Banerjee R: Thiosulfate
sulfurtransferase-like domain-containing 1 protein interacts with
thioredoxin. J Biol Chem. 293:2675–2686. 2018.PubMed/NCBI View Article : Google Scholar
|
43
|
Nandi DL, Horowitz PM and Westley J:
Rhodanese as a thioredoxin oxidase. Int J Biochem Cell Biol.
32:465–473. 2000.PubMed/NCBI View Article : Google Scholar
|
44
|
Iseme RA, McEvoy M, Kelly B, Agnew L,
Walker FR, Handley T, Oldmeadow C, Attia J and Boyle M: A role for
autoantibodies in atherogenesis. Cardiovasc Res. 113:1102–1112.
2017.PubMed/NCBI View Article : Google Scholar
|
45
|
Anderson KS and LaBaer J: The sentinel
within: Exploiting the immune system for cancer biomarkers. J
Proteome Res. 4:1123–1133. 2005.PubMed/NCBI View Article : Google Scholar
|