1
|
Zhu B, Chan SL, Li J, Li K, Wu H, Cui K
and Chen H: Non-alcoholic steatohepatitis pathogenesis, diagnosis,
and treatment. Front Cardiovasc Med. 8(742382)2021.PubMed/NCBI View Article : Google Scholar
|
2
|
Dufour JF, Anstee QM, Bugianesi E,
Harrison S, Loomba R, Paradis V, Tilg H, Wong VW and Zelber-Sagi S:
Current therapies and new developments in NASH. Gut. 71:2123–2134.
2022.PubMed/NCBI View Article : Google Scholar
|
3
|
Shah PA, Patil R and Harrison SA:
NAFLD-related hepatocellular carcinoma: The growing challenge.
Hepatology. 77:323–338. 2023.PubMed/NCBI View Article : Google Scholar
|
4
|
Santos JPMD, Maio MC, Lemes MA, Laurindo
LF, Haber JFDS, Bechara MD, Prado PSD Jr, Rauen EC, Costa F,
Pereira BCA, et al: Non-alcoholic steatohepatitis (NASH) and
organokines: What is now and what will be in the future. Int J Mol
Sci. 23(498)2022.PubMed/NCBI View Article : Google Scholar
|
5
|
Zeigerer A, Rodeheffer MS, McGraw TE and
Friedman JM: Insulin regulates leptin secretion from 3T3-L1
adipocytes by a PI 3 kinase independent mechanism. Exp Cell Res.
314:2249–2256. 2008.PubMed/NCBI View Article : Google Scholar
|
6
|
Tie F, Ding J, Hu N, Dong Q, Chen Z and
Wang H: Kaempferol and kaempferide attenuate oleic acid-induced
lipid accumulation and oxidative stress in HepG2 cells. Int J Mol
Sci. 22(8847)2021.PubMed/NCBI View Article : Google Scholar
|
7
|
Scorletti E and Carr RM: A new perspective
on NAFLD: Focusing on lipid droplets. J Hepatol. 76:934–945.
2022.PubMed/NCBI View Article : Google Scholar
|
8
|
Nettebrock NT and Bohnert M: Born this
way-Biogenesis of lipid droplets from specialized ER subdomains.
Biochim Biophys Acta Mol Cell Biol Lipids.
1865(158448)2020.PubMed/NCBI View Article : Google Scholar
|
9
|
Chiba M, Kubota S, Sato K and Monzen S:
Exosomes released from pancreatic cancer cells enhance angiogenic
activities via dynamin-dependent endocytosis in endothelial cells
in vitro. Sci Rep. 8(11972)2018.PubMed/NCBI View Article : Google Scholar
|
10
|
Chiba M, Kimura M and Asari S: Exosomes
secreted from human colorectal cancer cell lines contain mRNAs,
microRNAs and natural antisense RNAs, that can transfer into the
human hepatoma HepG2 and lung cancer A549 cell lines. Oncol Rep.
28:1551–1558. 2012.PubMed/NCBI View Article : Google Scholar
|
11
|
Chiba M: Differential expression of
natural antisense transcripts during liver development in embryonic
mice. Biomed Rep. 2:918–922. 2014.PubMed/NCBI View Article : Google Scholar
|
12
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408.
2001.PubMed/NCBI View Article : Google Scholar
|
13
|
Alonso-Peña M, Del Barrio M,
Peleteiro-Vigil A, Jimenez-Gonzalez C, Santos-Laso A, Arias-Loste
MT, Iruzubieta P and Crespo J: Innovative therapeutic approaches in
non-alcoholic fatty liver disease: When knowing your patient is
key. Int J Mol Sci. 24(10718)2023.PubMed/NCBI View Article : Google Scholar
|
14
|
Gómez-Lechón MJ, Donato MT,
Martínez-Romero A, Jiménez N, Castell JV and O'Connor JE: A human
hepatocellular in vitro model to investigate steatosis. Chem Biol
Interact. 165:106–116. 2007.PubMed/NCBI View Article : Google Scholar
|
15
|
Campos-Espinosa A and Guzmán C: A model of
experimental steatosis in vitro: Hepatocyte cell culture in lipid
overload-conditioned medium. J Vis Exp. 171(e62543)2021.PubMed/NCBI View
Article : Google Scholar
|
16
|
Okumura T: Role of lipid droplet proteins
in liver steatosis. J Physiol Biochem. 67:629–636. 2011.PubMed/NCBI View Article : Google Scholar
|
17
|
Pereira-Dutra FS and Bozza PT: Lipid
droplets diversity and functions in inflammation and immune
response. Expert Rev Proteomics. 18:809–825. 2021.PubMed/NCBI View Article : Google Scholar
|
18
|
Fagerberg L, Hallström BM, Oksvold P,
Kampf C, Djureinovic D, Odeberg J, Habuka M, Tahmasebpoor S,
Danielsson A, Edlund K, et al: Analysis of the human
tissue-specific expression by genome-wide integration of
transcriptomics and antibody-based proteomics. Mol Cell Proteomics.
13:397–406. 2014.PubMed/NCBI View Article : Google Scholar
|
19
|
Jin Y, Tan Y, Chen L, Liu Y and Ren Z:
Reactive oxygen species induces lipid droplet accumulation in HepG2
cells by increasing perilipin 2 expression. Int J Mol Sci.
19(3445)2018.PubMed/NCBI View Article : Google Scholar
|
20
|
Nocetti D, Espinosa A, Pino-De la Fuente
F, Sacristán C, Bucarey JL, Ruiz P, Valenzuela R, Chouinard-Watkins
R, Pepper I, Troncoso R and Puente L: Lipid droplets are both
highly oxidized and Plin2-covered in hepatocytes of diet-induced
obese mice. Appl Physiol Nutr Metab. 45:1368–1376. 2020.PubMed/NCBI View Article : Google Scholar
|
21
|
Griffin JD, Bejarano E, Wang XD and
Greenberg AS: Integrated action of autophagy and adipose tissue
triglyceride lipase ameliorates diet-induced hepatic steatosis in
liver-specific PLIN2 knockout mice. Cells. 10(1016)2021.PubMed/NCBI View Article : Google Scholar
|
22
|
Mak KM, Ren C, Ponomarenko A, Cao Q and
Lieber CS: Adipose differentiation-related protein is a reliable
lipid droplet marker in alcoholic fatty liver of rats. Alcohol Clin
Exp Res. 32:683–689. 2008.PubMed/NCBI View Article : Google Scholar
|
23
|
Carr RM, Peralta G, Yin X and Ahima RS:
Absence of perilipin 2 prevents hepatic steatosis, glucose
intolerance and ceramide accumulation in alcohol-fed mice. PLoS
One. 9(e97118)2014.PubMed/NCBI View Article : Google Scholar
|
24
|
Faulkner CS, White CM, Shah VH and Jophlin
LL: A single nucleotide polymorphism of PLIN2 is associated with
nonalcoholic steatohepatitis and causes phenotypic changes in
hepatocyte lipid droplets: A pilot study. Biochim Biophys Acta Mol
Cell Biol Lipids. 1865(158637)2020.PubMed/NCBI View Article : Google Scholar
|
25
|
Teixeira FS, Pimentel LL, Pintado ME and
Rodríguez-Alcalá LM: Impaired hepatic lipid metabolism and
biomarkers in fatty liver disease. Biochimie. 215:69–74.
2023.PubMed/NCBI View Article : Google Scholar
|