1
|
Flanagan AM, Larousserie F, O'Doneell PG
and Yoshida A: Giant Cell Tumor of Bone. In: WHO Classification of
Tumours Editorial Board. Soft tissue and bone tumours. 5th edition.
International Agency for Research on Cancer, Lyon, 2020.
|
2
|
Bertoni F, Bacchini P and Staals EL:
Malignancy in giant cell tumor of bone. Cancer. 97:2520–2529.
2003.PubMed/NCBI View Article : Google Scholar
|
3
|
Behjati S, Tarpey PS, Presneau N, Scheipl
S, Pillay N, Van Loo P, Wedge DC, Cooke SL, Gundem G, Davies H, et
al: Distinct H3F3A and H3F3B driver mutations define
chondroblastoma and giant cell tumor of bone. Nat Genet.
45:1479–1482. 2013.PubMed/NCBI View
Article : Google Scholar
|
4
|
Cleven AH, Hocker S, Briaire-de Bruijn I,
Szuhai K, Cleton-Jansen AM and Bovee JV: Mutation analysis of H3F3A
and H3F3B as a diagnostic tool for giant cell tumor of bone and
chondroblastoma. Am J Surg Pathol. 39:1576–1583. 2015.PubMed/NCBI View Article : Google Scholar
|
5
|
Yoshida KI, Nakano Y, Honda-Kitahara M,
Wakai S, Motoi T, Ogura K, Sano N, Shibata T, Okuma T, Iwata S, et
al: Absence of H3F3A mutation in a subset of malignant giant cell
tumor of bone. Mod Pathol. 32:1751–1761. 2019.PubMed/NCBI View Article : Google Scholar
|
6
|
Khazaei S, Jay ND, Deshmukh S, Hendrikse
LD, Jawhar W, Chen CCL, Mikael LG, Faury D, Marchione DM, Lanoix J,
et al: H3.3 G34W promotes growth and impedes differentiation of
Osteoblast-Like mesenchymal progenitors in giant cell tumor of
bone. Cancer Discov. 10:1968–1987. 2020.PubMed/NCBI View Article : Google Scholar
|
7
|
Amary F, Berisha F, Ye H, Gupta M,
Gutteridge A, Baumhoer D, Gibbons R, Tirabosco R, O'Donnell P and
Flanagan AM: H3F3A (Histone 3.3) G34W Immunohistochemistry: A
reliable marker defining benign and malignant giant cell tumor of
bone. Am J Surg Pathol. 41:1059–1068. 2017.PubMed/NCBI View Article : Google Scholar
|
8
|
Donigian S, Whiteway SL, Hipp SJ, Lybeck D
and Clark RO: Malignant giant cell tumor of bone with a KRAS G12V
mutation. J Pediatr Hematol Oncol. 44:e268–e271. 2022.PubMed/NCBI View Article : Google Scholar
|
9
|
Oda Y, Sakamoto A, Saito T, Matsuda S,
Tanaka K, Iwamoto Y and Tsuneyoshi M: Secondary malignant
giant-cell tumour of bone: Molecular abnormalities of p53 and H-ras
gene correlated with malignant transformation. Histopathology.
39:629–637. 2001.PubMed/NCBI View Article : Google Scholar
|
10
|
Fittall MW, Lyskjaer I, Ellery P, Lombard
P, Ijaz J, Strobl AC, Oukrif D, Tarabichi M, Sill M, Koelsche C, et
al: Drivers underpinning the malignant transformation of giant cell
tumour of bone. J Pathol. 252:433–440. 2020.PubMed/NCBI View Article : Google Scholar
|
11
|
Ishihara S, Yamamoto H, Iwasaki T, Toda Y,
Yamamoto T, Yoshimoto M, Ito Y, Susuki Y, Kawaguchi K, Kinoshita I,
et al: Histological and immunohistochemical features and genetic
alterations in the malignant progression of giant cell tumor of
bone: A possible association with TP53 mutation and loss of H3K27
trimethylation. Mod Pathol. 35:640–648. 2022.PubMed/NCBI View Article : Google Scholar
|
12
|
Mukai Y and Ueno H: Establishment and
implementation of cancer genomic medicine in Japan. Cancer Sci.
112:970–977. 2021.PubMed/NCBI View Article : Google Scholar
|
13
|
Kohno T, Kato M, Kohsaka S, Sudo T, Tamai
I, Shiraishi Y, Okuma Y, Ogasawara D, Suzuki T, Yoshida T and Mano
H: C-CAT: The national datacenter for cancer genomic medicine in
Japan. Cancer Discov. 12:2509–2515. 2022.PubMed/NCBI View Article : Google Scholar
|
14
|
Riely GJ, Kris MG, Rosenbaum D, Marks J,
Li A, Chitale DA, Nafa K, Riedel ER, Hsu M, Pao W, et al: Frequency
and distinctive spectrum of KRAS mutations in never smokers with
lung adenocarcinoma. Clin Cancer Res. 14:5731–5734. 2008.PubMed/NCBI View Article : Google Scholar
|
15
|
Modest DP, Ricard I, Heinemann V,
Hegewisch-Becker S, Schmiegel W, Porschen R, Stintzing S, Graeven
U, Arnold D, von Weikersthal LF, et al: Outcome according to KRAS-,
NRAS- and BRAF-mutation as well as KRAS mutation variants: pooled
analysis of five randomized trials in metastatic colorectal cancer
by the AIO colorectal cancer study group. Ann Oncol. 27:1746–1753.
2016.PubMed/NCBI View Article : Google Scholar
|
16
|
Halbrook CJ, Lyssiotis CA, Pasca di
Magliano M and Maitra A: Pancreatic cancer: Advances and
challenges. Cell. 186:1729–1754. 2023.PubMed/NCBI View Article : Google Scholar
|
17
|
Yang Y, Zhang H, Huang S and Chu Q: KRAS
mutations in solid tumors: Characteristics, current therapeutic
strategy, and potential treatment exploration. J Clin Med.
12(709)2023.PubMed/NCBI View Article : Google Scholar
|
18
|
Lutsik P, Baude A, Mancarella D, Öz S,
Kühn A, Toth R, Hey J, Toprak UH, Lim J, Nguyen VH, et al: Globally
altered epigenetic landscape and delayed osteogenic differentiation
in H3.3-G34W-mutant giant cell tumor of bone. Nat Commun.
11(5414)2020.PubMed/NCBI View Article : Google Scholar
|
19
|
Phillips JJ, Gong H, Chen K, Joseph NM,
van Ziffle J, Jin LW, Bastian BC, Bollen AW, Perry A, Nicolaides T,
et al: Activating NRF1-BRAF and ATG7-RAF1 fusions in anaplastic
pleomorphic xanthoastrocytoma without BRAF p.V600E mutation. Acta
Neuropathol. 132:757–760. 2016.PubMed/NCBI View Article : Google Scholar
|
20
|
Isaacson AL, Guseva NV, Bossler AD and Ma
D: Urothelial carcinoma with an NRF1-BRAF rearrangement and
response to targeted therapy. Cold Spring Harb Mol Case Stud.
5(a003848)2019.PubMed/NCBI View Article : Google Scholar
|
21
|
Chang KTE, Tay AZE, Kuick CH, Chen H,
Algar E, Taubenheim N, Campbell J, Mechinaud F, Campbell M, Super
L, et al: ALK-positive histiocytosis: an expanded clinicopathologic
spectrum and frequent presence of KIF5B-ALK fusion. Mod Pathol.
32:598–608. 2019.PubMed/NCBI View Article : Google Scholar
|
22
|
Kashima J, Yoshida M, Jimbo K, Izutsu K,
Ushiku T, Yonemori K and Yoshida A: ALK-positive histiocytosis of
the breast: A clinicopathologic study highlighting spindle cell
histology. Am J Surg Pathol. 45:347–355. 2021.PubMed/NCBI View Article : Google Scholar
|