Infrasound increases intracellular calcium concentration and induces apoptosis in hippocampi of adult rats
- Authors:
- Published online on: September 23, 2011 https://doi.org/10.3892/mmr.2011.597
- Pages: 73-77
Metrics: Total
Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Abstract
In the present study, we determined the effect of infrasonic exposure on apoptosis and intracellular free Ca2+ ([Ca2+]i) levels in the hippocampus of adult rats. Adult rats were randomly divided into the control and infrasound exposure groups. For infrasound treatment, animals received infrasonic exposure at 90 (8 Hz) or 130 dB (8 Hz) for 2 h per day. Hippocampi were dissected, and isolated hippocampal neurons were cultured. The [Ca2+]i levels in hippocampal neurons from adult rat brains were determined by Fluo-3/AM staining with a confocal microscope system on days 1, 7, 14, 21 and 28 following infrasonic exposure. Apoptosis was evaluated by Annexin V-FITC and propidium iodide double staining. Positive cells were sorted and analyzed by flow cytometry. Elevated [Ca2+]i levels were observed on days 14 and 21 after rats received daily treatment with 90 or 130 dB sound pressure level (SPL) infrasonic exposure (p<0.01 vs. control). The highest levels of [Ca2+]i were detected in the 130 dB SPL infrasonic exposure group. Meanwhile, apoptosis in hippocampal neurons was found to increase on day 7 following 90 dB SPL infrasound exposure, and significantly increased on day 14. Upon 130 dB infrasound treatment, apoptosis was first observed on day 14, whereas the number of apoptotic cells gradually decreased thereafter. Additionally, a marked correlation between cell apoptosis and [Ca2+]i levels was found on day 14 and 21 following daily treatment with 90 and 130 dB SPL, respectively. These results demonstrate that a period of infrasonic exposure induced apoptosis and upregulated [Ca2+]i levels in hippocampal neurons, suggesting that infrasound may cause damage to the central nervous system (CNS) through the Ca2+‑mediated apoptotic pathway in hippocampal neurons.