1
|
Nagase H: Activation mechanisms of matrix
metalloproteinases. Biol Chem. 378:151–160. 1997.PubMed/NCBI
|
2
|
Creemers EE, Cleutjens JP, Smits JF and
Daemen MJ: Matrix metalloproteinase inhibition after myocardial
infarction: a new approach to prevent heart failure? Circ Res.
89:201–210. 2001. View Article : Google Scholar : PubMed/NCBI
|
3
|
Lancelot E, Amirbekian V, Brigger I,
Raynaud JS, Ballet S, David C, Rousseaux O, Le Greneur S, Port M,
Lijnen HR, Bruneval P, Michel JB, Ouimet T, Roques B, Amirbekian S,
Hyafil F, Vucic E, Aguinaldo JG, Corot C and Fayad ZA: Evaluation
of matrix metalloproteinases in atherosclerosis using a novel
noninvasive imaging approach. Arterioscler Thromb Vasc Biol.
28:425–432. 2008. View Article : Google Scholar : PubMed/NCBI
|
4
|
Furman C, Luo Z, Walsh K, Duverger N,
Copin C, Fruchart JC and Rouis M: Systemic tissue inhibitor of
metalloproteinase-1 gene delivery reduces neointimal hyperplasia in
balloon-injured rat carotid artery. FEBS Lett. 531:122–126. 2002.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Fedak PW, Moravec CS, McCarthy PM,
Altamentova SM, Wong AP, Skrtic M, Verma S, Weisel RD and Li RK:
Altered expression of disintegrin metalloproteinases and their
inhibitor in human dilated cardiomyopathy. Circulation.
113:238–245. 2006. View Article : Google Scholar : PubMed/NCBI
|
6
|
Tziakas DN, Chalikias GK, Papaioakeim M,
Hatzinikolaou EI, Stakos DA, Tentes IK, Papanas N, Kortsaris A,
Maltezos E and Hatseras DI: Comparison of levels of matrix
metalloproteinase-2 and -3 in patients with ischemic cardiomyopathy
versus nonischemic cardiomyopathy. Am J Cardiol. 96:1449–1451.
2005. View Article : Google Scholar : PubMed/NCBI
|
7
|
Sun Y, Zhang JQ, Zhang J and Lamparter S:
Cardiac remodeling by fibrous tissue after infarction in rats. J
Lab Clin Med. 135:316–323. 2000. View Article : Google Scholar : PubMed/NCBI
|
8
|
Ogawa M, Suzuki J, Hishikari K, Takayama
K, Tanaka H and Isobe M: Clarithromycin attenuates acute and
chronic rejection via matrix metalloproteinase suppression in
murine cardiac transplantation. J Am Coll Cardiol. 51:1977–1985.
2008. View Article : Google Scholar
|
9
|
Lee SO, Chang YC, Whang K, Kim CH and Lee
IS: Role of NAD(P)H:quinone oxidoreductase 1 on tumor necrosis
factor-alpha-induced migration of human vascular smooth muscle
cells. Cardiovasc Res. 76:331–339. 2007. View Article : Google Scholar : PubMed/NCBI
|
10
|
Otero-Viñas M, Llorente-Cortés V, Peña E,
Padró T and Badimon L: Aggregated low density lipoproteins decrease
metalloproteinase-9 expression and activity in human coronary
smooth muscle cells. Atherosclerosis. 194:326–333. 2007.PubMed/NCBI
|
11
|
Cho A and Reidy MA: Matrix
metalloproteinase-9 is necessary for the regulation of smooth
muscle cell replication and migration after arterial injury. Circ
Res. 91:845–851. 2002. View Article : Google Scholar : PubMed/NCBI
|
12
|
Abe K, Ikeda T, Wake K, Sato T, Sato T and
Inoue H: Glycyrrhizin prevents
lipopolysaccharide/D-galactosamine-induced liver injury through
down-regulation of matrix metalloproteinase-9 in mice. J Pharm
Pharmacol. 60:91–97. 2008. View Article : Google Scholar : PubMed/NCBI
|
13
|
Pagenstecher A, Stalder AK and Kincaid CL:
Regulation of matrix metalloproteinases and their inhibitor genes
in lipopolysaccharide-induced endotoxemia in mice. Am J Pathol.
157:197–210. 2000. View Article : Google Scholar : PubMed/NCBI
|
14
|
Lin SJ, Lee IT, Chen YH, Lin FY, Sheu LM,
Ku HH, Shiao MS, Chen JW and Chen YL: Salvianolic acid B attenuates
MMP-2 and MMP-9 expression in vivo in apolipoprotein-E-deficient
mouse aorta and in vitro in LPS-treated human aortic smooth muscle
cells. J Cell Biochem. 100:372–384. 2007. View Article : Google Scholar : PubMed/NCBI
|
15
|
Beswick RA, Zhang H, Marable D, Catravas
JD, Hill WD and Webb RC: Long-term antioxidant administration
attenuates mineralocorticoid hypertension and renal inflammatory
response. Hypertension. 37:781–786. 2001. View Article : Google Scholar
|
16
|
Li Hongli and Sun Baogui: Toll-like
receptor 4 in atherosclerosis. J Cell Mol Med. 11:88–95. 2007.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Watari M, Watari H, Nachamkin I and
Strauss JF: Lipopolysaccharide induces expression of genes encoding
pro-inflammatory cytokines and the elastin-degrading enzyme,
cathepsin S, in human cervical smooth-muscle cells. J Soc Gynecol
Invest. 7:190–198. 2000. View Article : Google Scholar
|
18
|
Fiotti N, Altamura N, Fisicaro M, Carraro
N, Adovasio R, Sarra VM, Uxa L, Guarnieri G, Baxter BT and
Giansante C: MMP-9 microsatellite polymorphism: association with
the progression of intima-media thickening and constrictive
remodeling of carotid atherosclerotic plaques. Atherosclerosis.
182:287–292. 2005. View Article : Google Scholar
|
19
|
Tsai CS, Lin FY, Chen YH, Yang TL, Wang
HJ, Huang GS, Lin CY, Tsai YT, Lin SJ and Li CY: Cilostazol
attenuates MCP-1 and MMP-9 expression in vivo in LPS-administrated
balloon-injured rabbit aorta and in vitro in LPS-treated monocytic
THP-1 cells. J Cell Biochem. 103:54–66. 2008. View Article : Google Scholar : PubMed/NCBI
|
20
|
Bea F, Kreuzer J, Preusch M, Schaab S,
Isermann B, Rosenfeld ME, Katus H and Blessing E: Melagatran
reduces advanced atherosclerotic lesion size and may promote plaque
stability in apolipoprotein E-deficient mice. Arterioscler Thromb
Vasc Biol. 26:2787–2792. 2006. View Article : Google Scholar : PubMed/NCBI
|
21
|
Lee SY, Kim HJ, Lee WJ, Joo SH, Jeon SJ,
Kim JW, Kim HS, Han SH, Lee J, Park SH, Cheong JH, Kim WK, Ko KH
and Shin CY: Differential regulation of matrix metalloproteinase-9
and tissue plasminogen activator activity by the cyclic-AMP system
in lipopolysaccharide-stimulated rat primary astrocytes. Neurochem
Res. 33:2324–2334. 2008. View Article : Google Scholar
|
22
|
Marcet-Palacios M, Ulanova M, Duta F,
Puttagunta L, Munoz S, Gibbings D, Radomski M, Cameron L, Mayers I
and Befus AD: The transcription factor Wilms tumor 1 regulates
matrix metalloproteinase-9 through a nitric oxide-mediated pathway.
J Immunol. 179:256–265. 2007. View Article : Google Scholar : PubMed/NCBI
|