1
|
Chao TH, Yu HN, Huang CC, Liu WS, Tsai YW
and Wu WT: Association of interleukin-1β (-511C/T) polymorphisms
with osteoporosis in postmenopausal women. Ann Saudi Med.
30:437–441. 2010.
|
2
|
Lapauw BM, Taes Y, Bogaert V, Vanbillemont
G, Goemaere S, Zmierczak HG, De Bacquer D and Kaufman JM: Serum
estradiol is associated with volumetric BMD and modulates the
impact of physical activity on bone size at the age of peak bone
mass: a study in healthy male siblings. J Bone Miner Res.
24:1075–1085. 2009.PubMed/NCBI
|
3
|
Andersen TL, Sondergaard TE, Skorzynska
KE, Dagnaes-Hansen F, Plesner TL, Hauge EM, Plesner T and Delaisse
JM: A physical mechanism for coupling bone resorption and formation
in adult human bone. Am J Pathol. 174:239–247. 2009. View Article : Google Scholar : PubMed/NCBI
|
4
|
Marie PJ: The calcium-sensing receptor in
bone cells: a potential therapeutic target in osteoporosis. Bone.
46:571–576. 2010. View Article : Google Scholar : PubMed/NCBI
|
5
|
Quinn JM, Neale S, Fujikawa Y, McGee JO
and Athanasou NA: Human osteoclast formation from blood monocytes,
peritoneal macrophages and bone marrow cells. Calcif Tissue Int.
62:527–531. 1998. View Article : Google Scholar : PubMed/NCBI
|
6
|
Kim HJ, Minashima T, McCarthy EF, Winkles
JA and Kirsch T: Progressive ankylosis protein (ANK) in osteoblasts
and osteoclasts controls bone formation and bone remodeling. J Bone
Miner Res. 25:1771–1783. 2010. View
Article : Google Scholar : PubMed/NCBI
|
7
|
Wada T, Nakashima T, Hiroshi N and
Penninger JM: RANKL-RANK signaling in osteoclastogenesis and bone
disease. Trends Mol Med. 12:17–25. 2006. View Article : Google Scholar
|
8
|
Kobayashi Y, Udagawa N and Takahashi N:
Action of RANKL and OPG for osteoclastogenesis. Crit Rev Eukaryot
Gene Expr. 19:61–72. 2009. View Article : Google Scholar : PubMed/NCBI
|
9
|
Boyce BF and Xing L: Functions of
RANKL/RANK/OPG in bone modeling and remodeling. Arch Biochem
Biophys. 473:139–146. 2008. View Article : Google Scholar : PubMed/NCBI
|
10
|
Yao Z, Xing L, Qin C, Schwarz EM and Boyce
BF: Osteoclast precursor interaction with bone matrix induces
osteoclast formation directly by an interleukin-1-mediated
autocrine mechanism. J Biol Chem. 283:9917–9924. 2008. View Article : Google Scholar : PubMed/NCBI
|
11
|
Goto H, Hozumi A, Osaki M, Fukushima T,
Sakamoto K, Yonekura A, Tomita M, Furukawa K, Shindo H and Baba H:
Primary human bone marrow adipocytes support TNFα-induced
osteoclast differentiation and function through RANKL expression.
Cytokine. 56:662–668. 2011.
|
12
|
Axmann R, Böhm C, Krönke G, Zwerina J,
Smolen J and Schett G: Inhibition of interleukin-6 receptor
directly blocks osteoclast formation in vitro and in
vivo. Arthritis Rheum. 60:2747–2756. 2009. View Article : Google Scholar : PubMed/NCBI
|
13
|
McCarthy HS, Williams JH, Davie MW and
Marshall MJ: Platelet-derived growth factor stimulates
osteoprotegerin production in osteoblastic cells. J Cell Physiol.
218:350–354. 2009. View Article : Google Scholar : PubMed/NCBI
|
14
|
Futakuchi M, Nannuru KC, Varney ML,
Sadanandam A, Nakao K, Asai K, Shirai T, Sato S and Singh RK:
Transforming growth factor-β signaling at the tumor-bone interface
promotes mammary tumor growth and osteoclast activation. Cancer
Sci. 100:71–81. 2009.
|
15
|
Herrera BS, Ohira T, Gao L, Omori K, Yang
R, Zhu M, Muscara MN, Serhan CN, Van Dyke TE and Gyurko R: An
endogenous regulator of inflammation, resolvin E1, modulates
osteoclast differentiation and bone resorption. Br J Pharmacol.
155:1214–1223. 2008. View Article : Google Scholar : PubMed/NCBI
|
16
|
Nakashima K, Zhou X, Kunkel G, Zhang Z,
Deng JM, Behringer RR and de Crombrugghe B: The novel zinc
finger-containing transcription factor osterix is required for
osteoblast differentiation and bone formation. Cell. 108:17–29.
2002. View Article : Google Scholar : PubMed/NCBI
|
17
|
Lei SF, Wu S, Li LM, Deng FY, Xiao SM,
Jiang C, Chen Y, Jiang H, Yang F, Tan LJ, et al: An in vivo
genome wide gene expression study of circulating monocytes
suggested GBP1, STAT1 and CXCL10 as novel risk genes for the
differentiation of peak bone mass. Bone. 44:1010–1014. 2009.
|
18
|
Chen XD, Xiao P, Lei SF, Liu YZ, Guo YF,
Deng FY, Tan LJ, Zhu XZ, Chen FR, Recker RR and Deng HW: Gene
expression profiling in monocytes and SNP association suggest the
importance of the STAT1 gene for osteoporosis in both Chinese and
Caucasians. J Bone Miner Res. 25:339–355. 2010. View Article : Google Scholar : PubMed/NCBI
|
19
|
Horan K, Jang C, Bailey-Serres J, Mittler
R, Shelton C, Harper JF, Zhu JK, Cushman JC, Gollery M and Girke T:
Annotating genes of known and unknown function by large-scale
coexpression analysis. Plant Physiol. 147:41–57. 2008. View Article : Google Scholar : PubMed/NCBI
|
20
|
Smyth GK: Linear models and empirical
bayes methods for assessing differential expression in microarray
experiments. Stat Appl Genet Mol Biol. 3:Article 3. 2004.PubMed/NCBI
|
21
|
Gentleman RC, Carey VJ, Bates DM, Bolstad
B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge Y, Gentry J, et al:
Bioconductor: open software development for computational biology
and bioinformatics. Genome Biol. 5:R802004. View Article : Google Scholar : PubMed/NCBI
|
22
|
Altaf-Ul-Amin M, Shinbo Y, Mihara K,
Kurokawa K and Kanaya S: Development and implementation of an
algorithm for detection of protein complexes in large interaction
networks. BMC Bioinformatics. 7:2072006. View Article : Google Scholar : PubMed/NCBI
|
23
|
Fukushima A, Kusano M, Redestig H, Arita M
and Saito K: Metabolomic correlation-network modules in
Arabidopsis based on a graph-clustering approach. BMC Syst
Biol. 5:12011. View Article : Google Scholar : PubMed/NCBI
|
24
|
Ashburner M, Ball CA, Blake JA, Botstein
D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT,
et al: Gene ontology: tool for the unification of biology. The Gene
Ontology Consortium. Nat Genet. 25:25–29. 2000. View Article : Google Scholar : PubMed/NCBI
|
25
|
Huang da W, Sherman BT and Lempicki RA:
Systematic and integrative analysis of large gene lists using DAVID
bioinformatics resources. Nat Protoc. 4:44–57. 2009.PubMed/NCBI
|
26
|
Clowes JA, Riggs BL and Khosla S: The role
of the immune system in the pathophysiology of osteoporosis.
Immunol Rev. 208:207–227. 2005. View Article : Google Scholar : PubMed/NCBI
|
27
|
Orlić I, Borovecki F, Simić P and
Vukicević S: Gene expression profiling in bone tissue of
osteoporotic mice. J Ind Hyg Toxicol. 58:3–11. 2007.PubMed/NCBI
|
28
|
Kwak HB, Lee SW, Jin HM, Ha H, Lee SH,
Takeshita S, Tanaka S, Kim HM, Kim HH and Lee ZH: Monokine induced
by interferon-γ is induced by receptor activator of nuclear factor
κB ligand and is involved in osteoclast adhesion and migration.
Blood. 105:2963–2969. 2005.
|
29
|
Kim S, Koga T, Isobe M, Kern BE, Yokochi
T, Chin YE, Karsenty G, Taniguchi T and Takayanagi H: Stat1
functions as a cytoplasmic attenuator of Runx2 in the
transcriptional program of osteoblast differentiation. Genes Dev.
17:1979–1991. 2003. View Article : Google Scholar : PubMed/NCBI
|
30
|
Lei SF, Wu S, Li LM, Deng FY, Xiao SM,
Jiang C, Chen Y, Jiang H, Yang F and Tan LJ: An in vivo
genome wide gene expression study of circulating monocytes
suggested GBP1, STAT1 and CXCL10 as novel risk genes for the
differentiation of peak bone mass. Bone. 44:1010–1014. 2009.
|
31
|
Cheng YS, Patterson CE and Staeheli P:
Interferon-induced guanylate-binding proteins lack an N (T) KXD
consensus motif and bind GMP in addition to GDP and GTP. Mol Cell
Biol. 11:4717–4725. 1991.PubMed/NCBI
|
32
|
Ungureanu D, Vanhatupa S, Grönholm J,
Palvimo JJ and Silvennoinen O: SUMO-1 conjugation selectively
modulates STAT1-mediated gene responses. Blood. 106:224–226. 2005.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Kovarik P, Mangold M, Ramsauer K, Heidari
H, Steinborn R, Zotter A, Levy DE, Müller M and Decker T:
Specificity of signaling by STAT1 depends on SH2 and C-terminal
domains that regulate Ser727 phosphorylation, differentially
affecting specific target gene expression. EMBO J. 20:91–100. 2001.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Grassi F, Piacentini A, Cristino S,
Toneguzzi S, Cavallo C, Facchini A and Lisignoli G: Human
osteoclasts express different CXC chemokines depending on cell
culture substrate: molecular and immunocytochemical evidence of
high levels of CXCL10 and CXCL12. Histochem Cell Biol. 120:391–400.
2003. View Article : Google Scholar : PubMed/NCBI
|
35
|
Lee EY, Seo M, Juhnn YS, Kim JY, Hong YJ,
Lee YJ, Lee EB and Song YW: Potential role and mechanism of
IFN-γ-inducible protein-10 on receptor activator of nuclear factor
kappa-B ligand (RANKL) expression in rheumatoid arthritis.
Arthritis Res Ther. 13:R1042011.
|
36
|
Nakamura K, Deyama Y, Yoshimura Y, Suzuki
K and Morita M: Toll-like receptor 3 ligand-induced antiviral
response in mouse osteoblastic cells. Int J Mol Med. 19:771–775.
2007.PubMed/NCBI
|
37
|
Woeckel V, Eijken M, van de Peppel J,
Chiba H, van der Eerden B and van Leeuwen J: IFNβ impairs
extracellular matrix formation leading to inhibition of
mineralization by effects in the early stage of human osteoblast
differentiation. J Cell Physiol. 227:2668–2676. 2011.
|
38
|
Yoshida K, Okamura H, Amorim BR, Hinode D,
Yoshida H and Haneji T: PKR-mediated degradation of STAT1 regulates
osteoblast differentiation. Exp Cell Res. 315:2105–2114. 2009.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Yoshida K, Okamura H, Amorim BR, Ozaki A,
Tanaka H, Morimoto H and Haneji T: Double-stranded RNA-dependent
protein kinase is required for bone calcification in MC3T3-E1 cells
in vitro. Exp Cell Res. 311:117–125. 2005. View Article : Google Scholar : PubMed/NCBI
|
40
|
Woeckel VS, Koedam M, van de Peppel J,
Chiba H, van der Eerden BC and van Leeuwen JP: Evidence of Vitamin
D and interferon-β cross-talk in human osteoblasts with 1α,
25-dihydroxyvitamin D3 being dominant over interferon-β in
stimulating mineralization. J Cell Physiol. 227:3258–3266.
2011.
|
41
|
Lovibond AC, Haque SJ, Chambers TJ and Fox
SW: TGFβ-induced SOCS3 expression augments TNFα-induced osteoclast
formation. Biochem Biophys Res Commun. 309:762–767. 2003.
|
42
|
Zhang X, Alnaeeli M, Singh B and Teng YT:
Involvement of SOCS3 in regulation of CD11c+ dendritic
cell-derived osteoclastogenesis and severe alveolar bone loss.
Infect Immun. 77:2000–2009. 2009.PubMed/NCBI
|
43
|
Yoshimura A, Sanada T, Takaki H and Ohishi
M: Suppressor of cytokine signalling-1 (SOCS1) and SOCS3 regulate
osteoclastogenesis by blocking inflammatory cytokine signals. Nihon
Riumachi Gakkai, Gakujutsu Shukai, Kokusai Riumachi Simpojiumu
Puroguramu, Shorokushu. 50:152006.PubMed/NCBI
|
44
|
Cornish J, Callon KE, Bava U, Coy DH,
Mulvey TB, Murray MA, Cooper GJ and Reid IR: Systemic
administration of adrenomedullin (27–52) increases bone volume and
strength in male mice. J Endocrinol. 170:251–257. 2001.
|
45
|
Cornish J, Callon KE, Coy DH, Jiang NY,
Xiao L, Cooper GJ and Reid IR: Adrenomedullin is a potent
stimulator of osteoblastic activity in vitro and in
vivo. Am J Physiol. 273:E1113–1120. 1997.PubMed/NCBI
|
46
|
Cornish J, Grey A, Callon KE, Naot D, Hill
BL, Lin CQ, Balchin LM and Reid IR: Shared pathways of osteoblast
mitogenesis induced by amylin, adrenomedullin and IGF-1. Biochem
Biophys Res Commun. 318:240–246. 2004. View Article : Google Scholar : PubMed/NCBI
|
47
|
Uzan B, Villemin A, Garel JM and Cressent
M: Adrenomedullin is anti-apoptotic in osteoblasts through CGRP1
receptors and MEK-ERK pathway. J Cell Physiol. 215:122–128. 2008.
View Article : Google Scholar : PubMed/NCBI
|
48
|
Abdollahi M, Larijani B, Rahimi R and
Salari P: Role of oxidative stress in osteoporosis. Therapy.
2:787–796. 2005. View Article : Google Scholar
|
49
|
Deng FY, Lei SF, Chen XD, Tan LJ, Zhu XZ
and Deng HW: An integrative study ascertained SOD2 as a
susceptibility gene for osteoporosis in Chinese. J Bone Miner Res.
26:2695–2701. 2011. View
Article : Google Scholar : PubMed/NCBI
|
50
|
Ozgocmen S, Kaya H, Fadillioglu E, Aydogan
R and Yilmaz Z: Role of antioxidant systems, lipid peroxidation and
nitric oxide in postmenopausal osteoporosis. Mol Cell Biochem.
295:45–52. 2007. View Article : Google Scholar : PubMed/NCBI
|
51
|
Deng FY, Liu YZ, Li LM, Jiang C, Wu S,
Chen Y, Jiang H, Yang F, Xiong JX and Xiao P: Proteomic analysis of
circulating monocytes in Chinese premenopausal females with
extremely discordant bone mineral density. Proteomics. 8:4259–4272.
2008. View Article : Google Scholar : PubMed/NCBI
|
52
|
Levi G, Topilko P, Schneider-Maunoury S,
Lasagna M, Mantero S, Pesce B, Ghersi G, Cancedda R and Charnay P:
Role of Krox-20 in endochondral bone formationa. Ann NY Acad Sci.
785:288–291. 1996. View Article : Google Scholar : PubMed/NCBI
|
53
|
Bradley EW, Ruan MM and Oursler MJ: Novel
pro-survival functions of the Kruppel-like transcription factor
EGR2 in promotion of M-CSF-mediated osteoclast survival downstream
of the MEK/ERK pathway. J Biol Chem. 283:8055–8064. 2008.
View Article : Google Scholar : PubMed/NCBI
|
54
|
Gabet Y, Baniwal SK, Leclerc N, Shi Y,
Kohn-Gabet AE, Cogan J, Dixon A, Bachar M, Guo L, Turman JE Jr and
Frenkel B: Krox20/EGR2 deficiency accelerates cell growth and
differentiation in the monocytic lineage and decreases bone mass.
Blood. 116:3964–3971. 2010. View Article : Google Scholar : PubMed/NCBI
|
55
|
Suzuki M, Ohtori S, Inoue G, Orita S,
Ishikawa T, Miyagi M, Kamoda H, Eguchi Y, Arai G, et al: ATF3 and
GAP43 immunoreactive DRG neurons innervate the vertebral body in a
rat model of osteoporosis: GP18. Spine. 2011.
|
56
|
Purdue PE: Alternative macrophage
activation in periprosthetic osteolysis. Autoimmunity. 41:212–217.
2008. View Article : Google Scholar : PubMed/NCBI
|