1
|
Robertson RP, Davis C, Larsen J, Stratta R
and Sutherland DE: Pancreas and islet transplantation for patients
with diabetes. Diabetes Care. 23:112–116. 2000. View Article : Google Scholar : PubMed/NCBI
|
2
|
Shapiro AM, Lakey JR, Ryan EA, Korbutt GS,
Toth E, Warnock GL, Kneteman NM and Rajotte RV: Islet
transplantation in seven patients with type 1 diabetes mellitus
using a glucocorticoid-free immunosuppressive regimen. N Engl J
Med. 343:230–238. 2000. View Article : Google Scholar
|
3
|
Weir GC and Bonner-Weir S: Scientific and
political impediments to successful islet transplantation.
Diabetes. 46:1247–1256. 1997. View Article : Google Scholar : PubMed/NCBI
|
4
|
Weir GC and Bonner-Weir S: Islet
transplantation as a treatment for diabetes. J Am Optom Assoc.
69:727–732. 1998.PubMed/NCBI
|
5
|
Ryan EA, Paty BW, Senior PA, Bigam D,
Alfadhli E, Kneteman NM, Lakey JR and Shapiro AM: Five-year
follow-up after clinical islet Transplantation. Diabetes.
54:2060–2069. 2005.PubMed/NCBI
|
6
|
Roche E, Reig JA, Campos A, Paredes B,
Isaac JR, Lim S, Calne RY and Soria B: Insulin-secreting cells
derived from stem cells: clinical perspectives, hypes and hopes.
Transpl Immunol. 15:113–129. 2005. View Article : Google Scholar : PubMed/NCBI
|
7
|
Roche E, Santana A, Vicente-Salar N and
Reig JA: From stem cells to insulin-producing cells: towards a
bioartificial endocrine pancreas. Panminerva Med. 47:39–51.
2005.PubMed/NCBI
|
8
|
Yang L, Li S, Hatch H, Ahrens K, Cornelius
JG, Petersen BE and Peck AB: In vitro trans-differentiation
of adult hepatic stem cells into pancreatic endocrine
hormone-producing cells. Proc Natl Acad Sci USA. 99:8078–8083.
2002. View Article : Google Scholar
|
9
|
Herzog EL, Chai L and Krause DS:
Plasticity of marrow-derived stem cells. Blood. 102:3483–3493.
2003. View Article : Google Scholar : PubMed/NCBI
|
10
|
Tuan RS, Boland G and Tuli R: Adult
mesenchymal stem cells and cell-based tissue engineering. Arthritis
Res Ther. 5:32–45. 2003. View
Article : Google Scholar : PubMed/NCBI
|
11
|
Deans RJ and Moseley AB: Mesenchymal stem
cells: biology and potential clinical uses. Exp Hematol.
28:875–884. 2000. View Article : Google Scholar : PubMed/NCBI
|
12
|
Pittenger MF, Mackay AM, Beck SC, Jaiswal
RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S and
Marshak DR: Multilineage potential of adult human mesenchymal stem
cells. Science. 284:143–147. 1999. View Article : Google Scholar : PubMed/NCBI
|
13
|
Tang DQ, Cao LZ, Burkhardt BR, Xia CQ,
Litherland SA, Atkinson MA and Yang LJ: In vivo and in vitro
characterization of insulin-producing cells obtained from murine
bone marrow. Diabetes. 53:1721–1732. 2004. View Article : Google Scholar : PubMed/NCBI
|
14
|
Lee K, Majumdar MK, Buyaner D, Hendricks
JK, Pittenger MF and Mosca JD: Human mesenchymal stem cells
maintain transgene expression during expansion and differentiation.
Mol Ther. 3:857–866. 2001. View Article : Google Scholar : PubMed/NCBI
|
15
|
Chou YH, Khuon S, Herrmann H and Goldman
RD: Nestin promotes the phosphorylation-dependent disassembly of
vimentin intermediate filaments during mitosis. Mol Biol Cell.
14:1468–1478. 2003. View Article : Google Scholar : PubMed/NCBI
|
16
|
Lendahl U, Zimmerman LB and McKay RD: CNS
stem cells express a new class of intermediate filament protein.
Cell. 60:585–595. 1990. View Article : Google Scholar : PubMed/NCBI
|
17
|
Taguchi M and Otsuki M: Co-localization of
nestin and PDX-1 in small evaginations of the main pancreatic duct
in adult rats. J Mol Histol. 35:785–789. 2004. View Article : Google Scholar : PubMed/NCBI
|
18
|
Yokoyama A, Sakamoto A, Kameda H, Imai Y
and Tanaka J: NG2 proteoglycan-expressing microglia as multipotent
neural progenitors in normal and pathologic brains. Glia.
53:754–768. 2006. View Article : Google Scholar : PubMed/NCBI
|
19
|
Yokoyama A, Yang L, Itoh S, Mori K and
Tanaka J: Microglia, a potential source of neurons, astrocytes and
oligodendrocytes. Glia. 45:96–104. 2004.PubMed/NCBI
|
20
|
Milanesi A, Lee JW, Xu Q, Perin L and Yu
JS: Differentiation of nestin-positive cells derived from bone
marrow into pancreatic endocrine and ductal cells in vitro. J
Endocrinol. 209:193–201. 2011. View Article : Google Scholar : PubMed/NCBI
|
21
|
Ferber S, Halkin A, Cohen H, Ber I, Einav
Y, Goldberg I, Barshack I, Seijffers R, Kopolovic J, Kaiser N and
Karasik A: Pancreatic and duodenal homeobox gene 1 induces
expression of insulin genes in liver and ameliorates
streptozotocin-induced hyperglycemia. Nat Med. 6:568–572. 2000.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Sapir T, Shternhall K, Meivar-Levy I,
Blumenfeld T, Cohen H, Skutelsky E, Eventov-Friedman S, Barshack I,
Goldberg I, Pri-Chen S, et al: Cell-replacement therapy for
diabetes: Generating functional insulin-producing tissue from adult
human liver cells. Proc Natl Acad Sci USA. 102:7964–7969. 2005.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Bonner-Weir S, Taneja M, Weir GC,
Tatarkiewicz K, Song KH, Sharma A and O’Neil JJ: In vitro
cultivation of human islets from expanded ductal tissue. Proc Natl
Acad Sci USA. 97:7999–8004. 2000. View Article : Google Scholar : PubMed/NCBI
|
24
|
Ramiya VK, Maraist M, Arfors KE, Schatz
DA, Peck AB and Cornelius JG: Reversal of insulin-dependent
diabetes using islets generated in vitro from pancreatic stem
cells. Nat Med. 6:278–282. 2000. View
Article : Google Scholar : PubMed/NCBI
|
25
|
Suzuki A, Nakauchi H and Taniguchi H:
Glucagon-like peptide 1 (1–37) converts intestinal epithelial cells
into insulin-producing cells. Proc Natl Acad Sci USA.
100:5034–5039. 2003.
|
26
|
Assady S, Maor G, Amit M, Itskovitz-Eldor
J, Skorecki KL and Tzukerman M: Insulin production by human
embryonic stem cells. Diabetes. 50:1691–1697. 2001. View Article : Google Scholar : PubMed/NCBI
|
27
|
Wang Y, Egan JM, Raygada M, Nadiv O, Roth
J and Montrose-Rafizadeh C: Glucagon-like peptide-1 affects gene
transcription and messenger ribonucleic acid stability of
components of the insulin secretory system in RIN 1046-38 cells.
Endocrinology. 136:4910–4917. 1995.PubMed/NCBI
|
28
|
Wang Y, Perfetti R, Greig NH, Holloway HW,
DeOre KA, Montrose-Rafizadeh C, Elahi D and Egan JM: Glucagon-like
peptide-1 can reverse the age-related decline in glucose tolerance
in rats. J Clin Invest. 99:2883–2889. 1997. View Article : Google Scholar : PubMed/NCBI
|
29
|
MacDonald PE, El-kholy W, Riedel MJ,
Salapatek AF, Light PE and Wheeler MB: The multiple actions of
GLP-1 on the process of glucose-stimulated insulin secretion.
Diabetes. 51(Suppl 3): S434–S442. 2002. View Article : Google Scholar : PubMed/NCBI
|
30
|
Ohgawara H, Kawamura M, Honda M, et al:
Reversal of glucose insensitivity of pancreatic B-cells due to
prolonged exposure to high glucose in culture: effect of
nicotinamide on pancreatic B-cells. Tohoku J Exp Med. 169:159–166.
1993. View Article : Google Scholar : PubMed/NCBI
|
31
|
Campbell SC and Macfarlane WM: Regulation
of the pdx1 gene promoter in pancreatic beta-cells. Biochem Biophys
Res Commun. 299:277–284. 2002. View Article : Google Scholar : PubMed/NCBI
|
32
|
Cao LZ, Tang DQ, Horb ME, Li SW and Yang
LJ: High glucose is necessary for complete maturation of
Pdx1-VP16-expressing hepatic cells into functional
insulin-producing cells. Diabetes. 53:3168–3178. 2004. View Article : Google Scholar : PubMed/NCBI
|
33
|
Hui H, Wright C and Perfetti R:
Glucagon-like peptide 1 induces differentiation of islet duodenal
homeobox-1-positive pancreatic ductal cells into insulin-secreting
cells. Diabetes. 50:785–796. 2001. View Article : Google Scholar : PubMed/NCBI
|
34
|
Hori Y, Gu X, Xie X and Kim SK:
Differentiation of insulin-producing cells from human neural
progenitor cells. PLoS Med. 2:e1032005. View Article : Google Scholar : PubMed/NCBI
|
35
|
Gao R, Ustinov J, Pulkkinen MA, Lundin K,
Korsgren O and Otonkoski T: Characterization of endocrine
progenitor cells and critical factors for their differentiation in
human adult pancreatic cell culture. Diabetes. 52:2007–2015. 2003.
View Article : Google Scholar : PubMed/NCBI
|