1
|
Layland J, Solaro RJ and Shah AM:
Regulation of cardiac contractile function by troponin I
phosphorylation. Cardiovasc Res. 66:12–21. 2005. View Article : Google Scholar : PubMed/NCBI
|
2
|
Marston SB and Redwood CS: Modulation of
thin filament activation by breakdown or isoform switching of thin
filament proteins: physiological and pathological implications.
Circ Res. 93:1170–1178. 2003. View Article : Google Scholar : PubMed/NCBI
|
3
|
Solaro RJ, Rosevear P and Kobayashi T: The
unique functions of cardiac troponin I in the control of cardiac
muscle contraction and relaxation. Biochem Biophys Res Commun.
369:82–87. 2008. View Article : Google Scholar : PubMed/NCBI
|
4
|
Fentzke RC, Buck SH, Patel JR, Lin H,
Wolska BM, Stojanovic MO, Martin AF, Solaro RJ, Moss RL and Leiden
JM: Impaired cardiomyocyte relaxation and diastolic function in
transgenic mice expressing slow skeletal troponin I in the heart. J
Physiol. 517:143–157. 1999. View Article : Google Scholar : PubMed/NCBI
|
5
|
Arteaga GM, Warren CM, Milutinovic S,
Martin AF and Solaro RJ: Specific enhancement of sarcomeric
response to Ca2+ protects murine myocardium against
ischemia-reperfusion dysfunction. Am J Physiol Heart Circ Physiol.
289:H2183–H2192. 2005. View Article : Google Scholar : PubMed/NCBI
|
6
|
Barbato JC, Huang QQ, Hossain MM, Bond M
and Jin JP: Proteolytic N-terminal truncation of cardiac troponin I
enhances ventricular diastolic function. J Biol Chem.
280:6602–6609. 2005. View Article : Google Scholar : PubMed/NCBI
|
7
|
Takimoto E, Soergel DG, Janssen PM, Stull
LB, Kass DA and Murphy AM: Frequency- and afterload-dependent
cardiac modulation in vivo by troponin I with constitutively active
protein kinase A phosphorylation sites. Circ Res. 94:496–504. 2004.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Dong WJ, An J, Xing J and Cheung HC:
Structural transition of the inhibitory region of troponin I within
the regulated cardiac thin filament. Arch Biochem Biophys.
456:135–142. 2006. View Article : Google Scholar : PubMed/NCBI
|
9
|
Sadayappan S, Finley N, Howarth JW,
Osinska H, Klevitsky R, Lorenz JN, Rosevear PR and Robbins J: Role
of the acidic N’ region of cardiac troponin I in regulating
myocardial function. FASEB J. 22:1246–1257. 2008.
|
10
|
Yu ZB, Zhang LF and Jin JP: A proteolytic
NH2-terminal truncation of cardiac troponin I that is
up-regulated in simulated microgravity. J Biol Chem.
276:15753–15760. 2001.PubMed/NCBI
|
11
|
Zhang L, Wang YY and Yu ZB: Depressed
responsiveness of cardiomyocytes to isoproterenol in simulated
weightlessness rats. Sheng Li Xue Bao. 59:845–850. 2007.(In
Chinese).
|
12
|
Yin W, Liu JC, Fan R, Sun XQ, Ma J, Feng
N, Zhang QY, Yin Z, Zhang SM, Guo HT, Bi H, Wang YM, Sun X, Cheng
L, Cui Q, Yu SQ, Yi DH and Pei JM: Modulation of
{beta}-adrenoceptor signaling in the hearts of 4-wk simulated
weightlessness rats. J Appl Physiol. 105:569–574. 2008.
|
13
|
Morey-Holton ER and Globus RK: Hindlimb
unloading rodent model: technical aspects. J Appl Physiol.
92:1367–1377. 2002. View Article : Google Scholar : PubMed/NCBI
|
14
|
Nagata K, Liao R, Eberli FR, Satoh N,
Chevalier B, Apstein CS and Suter TM: Early changes in
excitation-contraction coupling: transition from compensated
hypertrophy to failure in Dahl salt-sensitive rat myocytes.
Cardiovasc Res. 37:467–477. 1998. View Article : Google Scholar : PubMed/NCBI
|
15
|
Fabiato A and Fabiato F: Effects of
magnesium on contractile activation of skinned cardiac cells. J
Physiol. 249:497–517. 1975. View Article : Google Scholar : PubMed/NCBI
|
16
|
MacDonnell SM, García-Rivas G, Scherman
JA, Kubo H, Chen X, Valdivia H and Houser SR: Adrenergic regulation
of cardiac contractility does not involve phosphorylation of the
cardiac ryanodine receptor at serine 2808. Circ Res. 102:e65–e72.
2008. View Article : Google Scholar : PubMed/NCBI
|
17
|
Stelzer JE, Patel JR, Walker JW and Moss
RL: Differential roles of cardiac myosin-binding protein C and
cardiac troponin I in the myofibrillar force responses to protein
kinase A phosphorylation. Circ Res. 101:503–511. 2007. View Article : Google Scholar : PubMed/NCBI
|
18
|
Sadayappan S, Gulick J, Klevitsky R,
Lorenz JN, Sargent M, Molkentin JD and Robbins J: Cardiac myosin
binding protein-C phosphorylation in a {beta}-myosin heavy chain
background. Circulation. 119:1253–1262. 2009.PubMed/NCBI
|
19
|
Sadayappan S, Osinska H, Klevitsky R,
Lorenz JN, Sargent M, Molkentin JD, Seidman CE, Seidman JG and
Robbins J: Cardiac myosin binding protein C phosphorylation is
cardioprotective. Proc Natl Acad Sci USA. 103:16918–16923. 2006.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Li L, Desantiago J, Chu G, Kranias EG and
Bers DM: Phosphorylation of phospholamban and troponin I in
beta-adrenergic-induced acceleration of cardiac relaxation. Am J
Physiol Heart Circ Physiol. 278:H769–H779. 2000.PubMed/NCBI
|
21
|
Saucerman JJ and McCulloch AD: Mechanistic
systems models of cell signaling networks: a case study of myocyte
adrenergic regulation. Prog Biophys Mol Biol. 85:261–278. 2004.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Zhang R, Zhao J, Mandveno A and Potter JD:
Cardiac troponin I phosphorylation increases the rate of cardiac
muscle relaxation. Circ Res. 76:1028–1035. 1995. View Article : Google Scholar : PubMed/NCBI
|