1
|
Li L, Zhang J, Liu X, Li X, Jiao B and
Kang T: Clinical outcomes of radiofrequency ablation and surgical
resection for small hepatocellular carcinoma: a meta-analysis. J
Gastroenterol Hepatol. 27:51–58. 2012. View Article : Google Scholar : PubMed/NCBI
|
2
|
Tiong L and Maddern GJ: Systematic review
and meta-analysis of survival and disease recurrence after
radiofrequency ablation for hepatocellular carcinoma. Br J Surg.
98:1210–1224. 2011. View
Article : Google Scholar : PubMed/NCBI
|
3
|
Gluer AM, Cocco N, Laurence JM, Johnston
ES, Hollands MJ, Pleass HC, Richardson AJ and Lam VW: Systematic
review of actual 10-year survival following resection for
hepatocellular carcinoma. HPB (Oxford). 14:285–290. 2012.PubMed/NCBI
|
4
|
Hasegawa K and Kokudo N: Surgical
treatment of hepatocellular carcinoma. Surg Today. 39:833–843.
2009. View Article : Google Scholar : PubMed/NCBI
|
5
|
Peck-Radosavljevic M, Greten TF, Lammer J,
Rosmorduc O, Sangro B, Santoro A and Bolondi L: Consensus on the
current use of sorafenib for the treatment of hepatocellular
carcinoma. Eur J Gastroenterol Hepatol. 22:391–398. 2010.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Wiedmann MW and Mossner J: Molecular
targeted therapy of hepatocellular carcinoma - results of the first
clinical studies. Curr Cancer Drug Targets. 11:714–733. 2011.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Pandey PR, Liu W, Xing F, Fukuda K and
Watabe K: Anti-cancer drugs targeting fatty acid synthase (FAS).
Recent Pat Anticancer Drug Discov. 7:185–197. 2012. View Article : Google Scholar : PubMed/NCBI
|
8
|
Romero-Garcia S, Lopez-Gonzalez JS,
Baez-Viveros JL, Aguilar-Cazares D and Prado-Garcia H: Tumor cell
metabolism: an integral view. Cancer Biol Ther. 12:939–948. 2011.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Dang CV: Links between metabolism and
cancer. Genes Dev. 26:877–890. 2012. View Article : Google Scholar : PubMed/NCBI
|
10
|
de Souza AC, Justo GZ, de Araujo DR and
Cavagis AD: Defining the molecular basis of tumor metabolism: a
continuing challenge since Warburg's discovery. Cell Physiol
Biochem. 28:771–792. 2011.PubMed/NCBI
|
11
|
Christofk HR, Vander Heiden MG, Harris MH,
Ramanathan A, Gerszten RE, Wei R, Fleming MD, Schreiber SL and
Cantley LC: The M2 splice isoform of pyruvate kinase is important
for cancer metabolism and tumour growth. Nature. 452:230–233. 2008.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Christofk HR, Vander Heiden MG, Wu N,
Asara JM and Cantley LC: Pyruvate kinase M2 is a
phosphotyrosine-binding protein. Nature. 452:181–186. 2008.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Flavin R, Peluso S, Nguyen PL and Loda M:
Fatty acid synthase as a potential therapeutic target in cancer.
Future Oncol. 6:551–562. 2010. View Article : Google Scholar : PubMed/NCBI
|
14
|
Kridel SJ, Lowther WT and Pemble CW IV:
Fatty acid synthase inhibitors: new directions for oncology. Expert
Opin Investig Drugs. 16:1817–1829. 2007. View Article : Google Scholar : PubMed/NCBI
|
15
|
Litwin JA, Beier K, Volkl A, Hofmann WJ
and Fahimi HD: Immunocytochemical investigation of catalase and
peroxisomal lipid beta-oxidation enzymes in human hepatocellular
tumors and liver cirrhosis. Virchows Arch. 435:486–495. 1999.
View Article : Google Scholar
|
16
|
Okuda K: Hepatocellular carcinoma:
clinicopathological aspects. J Gastroenterol Hepatol. 12:S314–S318.
1997. View Article : Google Scholar : PubMed/NCBI
|
17
|
Qin LX and Tang ZY: The prognostic
significance of clinical and pathological features in
hepatocellular carcinoma. World J Gastroenterol. 8:193–199.
2002.PubMed/NCBI
|
18
|
Trevisani F, Cantarini MC, Wands JR and
Bernardi M: Recent advances in the natural history of
hepatocellular carcinoma. Carcinogenesis. 29:1299–1305. 2008.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Kim SH, Lim HK, Choi D, Lee WJ, Kim MJ,
Kim CK, Jeon YH, Lee JM and Rhim H: Percutaneous radiofrequency
ablation of hepatocellular carcinoma: effect of histologic grade on
therapeutic results. AJR Am J Roentgenol. 186(Suppl 5): S327–S333.
2006. View Article : Google Scholar : PubMed/NCBI
|
20
|
Yao D, Dai C and Peng S: Mechanism of the
mesenchymal-epithelial transition and its relationship with
metastatic tumor formation. Mol Cancer Res. 9:1608–1620. 2011.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Gomes LR, Terra LF, Sogayar MC and
Labriola L: Epithelial-mesenchymal transition: implications in
cancer progression and metastasis. Curr Pharm Biotechnol.
12:1881–1890. 2011. View Article : Google Scholar : PubMed/NCBI
|
22
|
Qin LX and Tang ZY: Recent progress in
predictive biomarkers for metastatic recurrence of human
hepatocellular carcinoma: a review of the literature. J Cancer Res
Clin Oncol. 130:497–513. 2004.PubMed/NCBI
|
23
|
Yao DF, Wu XH, Zhu Y, Shi GS, Dong ZZ, Yao
DB, Wu W, Qiu LW and Meng XY: Quantitative analysis of vascular
endothelial growth factor, microvascular density and their
clinicopathologic features in human hepatocellular carcinoma.
Hepatobiliary Pancreat Dis Int. 4:220–226. 2005.
|
24
|
Feng DY, Shen M, Zheng H and Cheng RX:
Relationship between vascular endothelial growth factor expression
and microvessel density in hepatocellular carcinomas and their
surrounding liver tissue. Hunan Yi Ke Da Xue Xue Bao. 25:132–134.
2000.(In Chinese).
|
25
|
Edmondson HA and Steiner PE: Primary
carcinoma of the liver: a study of 100 cases among 48,900
necropsies. Cancer. 7:462–503. 1954. View Article : Google Scholar : PubMed/NCBI
|
26
|
Becker KF, Rosivatz E, Blechschmidt K,
Kremmer E, Sarbia M and Hofler H: Analysis of the E-cadherin
repressor Snail in primary human cancers. Cells Tissues Organs.
185:204–212. 2007. View Article : Google Scholar : PubMed/NCBI
|
27
|
Haraguchi M: The role of the
transcriptional regulator snail in cell detachment, reattachment
and migration. Cell Adh Migr. 3:259–263. 2009. View Article : Google Scholar : PubMed/NCBI
|
28
|
Kajdaniuk D, Marek B, Foltyn W and
Kos-Kudla B: Vascular endothelial growth factor (VEGF) - part 1: in
physiology and pathophysiology. Endokrynol Pol. 62:444–455.
2011.PubMed/NCBI
|
29
|
Ferrara N, Houck K, Jakeman L and Leung
DW: Molecular and biological properties of the vascular endothelial
growth factor family of proteins. Endocr Rev. 13:18–32. 1992.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Sato Y, Teruyama K, Nakano T, Oda N, Abe
M, Tanaka K and Iwasaka-Yagi C: Role of transcription factors in
angiogenesis: Ets-1 promotes angiogenesis as well as endothelial
apoptosis. Ann N Y Acad Sci. 947:117–123. 2001. View Article : Google Scholar : PubMed/NCBI
|
31
|
Dittmer J: The biology of the Ets1
proto-oncogene. Mol Cancer. 2:292003. View Article : Google Scholar : PubMed/NCBI
|
32
|
Frain M, Swart G, Monaci P, Nicosia A,
Stampfli S, Frank R and Cortese R: The liver-specific transcription
factor LF-B1 contains a highly diverged homeobox DNA binding
domain. Cell. 59:145–157. 1989. View Article : Google Scholar : PubMed/NCBI
|
33
|
Taraviras S, Monaghan AP, Schutz G and
Kelsey G: Characterization of the mouse HNF-4 gene and its
expression during mouse embryogenesis. Mech Dev. 48:67–79. 1994.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Faust DM, Boshart M, Imaizumi-Scherrer T,
Schutz G and Weiss MC: Constancy of expression of the protein
kinase A regulatory subunit R1 alpha in hepatoma cell lines of
different phenotypes. Cell Growth Differ. 5:47–53. 1994.PubMed/NCBI
|
35
|
Yokoyama Y, Kuramitsu Y, Takashima M,
Iizuka N, Toda T, Terai S, Sakaida I, Oka M, Nakamura K and Okita
K: Proteomic profiling of proteins decreased in hepatocellular
carcinoma from patients infected with hepatitis C virus.
Proteomics. 4:2111–2116. 2004. View Article : Google Scholar : PubMed/NCBI
|
36
|
Suto K, Kajihara-Kano H, Yokoyama Y,
Hayakari M, Kimura J, Kumano T, Takahata T, Kudo H and Tsuchida S:
Decreased expression of the peroxisomal bifunctional enzyme and
carbonyl reductase in human hepatocellular carcinomas. J Cancer Res
Clin Oncol. 125:83–88. 1999. View Article : Google Scholar : PubMed/NCBI
|
37
|
Yang SH, Watanabe J, Nakashima O and
Kojiro M: Clinicopathologic study on clear cell hepatocellular
carcinoma. Pathol Int. 46:503–509. 1996. View Article : Google Scholar : PubMed/NCBI
|
38
|
Koopman WJ, Nijtmans LG, Dieteren CE,
Roestenberg P, Valsecchi F, Smeitink JA and Willems PH: Mammalian
mitochondrial complex I: biogenesis, regulation, and reactive
oxygen species generation. Antioxid Redox Signal. 12:1431–1470.
2010. View Article : Google Scholar : PubMed/NCBI
|
39
|
Pelicano H, Carney D and Huang P: ROS
stress in cancer cells and therapeutic implications. Drug Resist
Updat. 7:97–110. 2004. View Article : Google Scholar : PubMed/NCBI
|
40
|
Altenberg B and Greulich KO: Genes of
glycolysis are ubiquitously overexpressed in 24 cancer classes.
Genomics. 84:1014–1020. 2004. View Article : Google Scholar : PubMed/NCBI
|
41
|
Mazurek S, Boschek CB, Hugo F and
Eigenbrodt E: Pyruvate kinase type M2 and its role in tumor growth
and spreading. Semin Cancer Biol. 15:300–308. 2005. View Article : Google Scholar : PubMed/NCBI
|
42
|
Tani K, Yoshida MC, Satoh H, Mitamura K,
Noguchi T, Tanaka T, Fujii H and Miwa S: Human M2-type pyruvate
kinase: cDNA cloning, chromosomal assignment and expression in
hepatoma. Gene. 73:509–516. 1988. View Article : Google Scholar : PubMed/NCBI
|
43
|
Hacker HJ, Steinberg P and Bannasch P:
Pyruvate kinase isoenzyme shift from L-type to M2-type is a late
event in hepatocarcinogenesis induced in rats by a
choline-deficient/DL-ethionine-supplemented diet. Carcinogenesis.
19:99–107. 1998. View Article : Google Scholar : PubMed/NCBI
|
44
|
Kitamura K, Hatano E, Higashi T, Narita M,
Seo S, Nakamoto Y, Yamanaka K, Nagata H, Taura K, Yasuchika K,
Nitta T and Uemoto S: Proliferative activity in hepatocellular
carcinoma is closely correlated with glucose metabolism but not
angiogenesis. J Hepatol. 55:846–857. 2011. View Article : Google Scholar : PubMed/NCBI
|
45
|
Ahluwalia A and Tarnawski AS: Critical
role of hypoxia sensor - HIF-1alpha in VEGF gene activation.
Implications for angiogenesis and tissue injury healing. Curr Med
Chem. 19:90–97. 2012. View Article : Google Scholar : PubMed/NCBI
|
46
|
Luo W, Hu H, Chang R, Zhong J, Knabel M,
O'Meally R, Cole RN, Pandey A and Semenza GL: Pyruvate kinase M2 is
a PHD3-stimulated coactivator for hypoxia-inducible factor 1. Cell.
145:732–744. 2011. View Article : Google Scholar : PubMed/NCBI
|
47
|
Oikawa M, Abe M, Kurosawa H, Hida W,
Shirato K and Sato Y: Hypoxia induces transcription factor ETS-1
via the activity of hypoxia-inducible factor-1. Biochem Biophys Res
Commun. 289:39–43. 2001. View Article : Google Scholar : PubMed/NCBI
|
48
|
Miyoshi A, Kitajima Y, Ide T, Ohtaka K,
Nagasawa H, Uto Y, Hori H and Miyazaki K: Hypoxia accelerates
cancer invasion of hepatoma cells by upregulating MMP expression in
an HIF-1α-independent manner. Int J Oncol. 29:1533–1539.
2006.PubMed/NCBI
|
49
|
Salnikow K, Aprelikova O, Ivanov S,
Tackett S, Kaczmarek M, Karaczyn A, Yee H, Kasprzak KS and
Niederhuber J: Regulation of hypoxia-inducible genes by ETS1
transcription factor. Carcinogenesis. 29:1493–1499. 2008.
View Article : Google Scholar : PubMed/NCBI
|
50
|
Ciruna B and Rossant J: FGF signaling
regulates mesoderm cell fate specification and morphogenetic
movement at the primitive streak. Dev Cell. 1:37–49. 2001.
View Article : Google Scholar : PubMed/NCBI
|
51
|
Thuault S, Tan EJ, Peinado H, Cano A,
Heldin CH and Moustakas A: HMGA2 and Smads co-regulate SNAIL1
expression during induction of epithelial-to-mesenchymal
transition. J Biol Chem. 283:33437–33446. 2008. View Article : Google Scholar : PubMed/NCBI
|
52
|
Wanami LS, Chen HY, Peiro S, Garcia de
Herreros A and Bachelder RE: Vascular endothelial growth factor-A
stimulates Snail expression in breast tumor cells: implications for
tumor progression. Exp Cell Res. 314:2448–2453. 2008. View Article : Google Scholar : PubMed/NCBI
|
53
|
Imai T, Horiuchi A, Wang C, Oka K, Ohira
S, Nikaido T and Konishi I: Hypoxia attenuates the expression of
E-cadherin via up-regulation of SNAIL in ovarian carcinoma cells.
Am J Pathol. 163:1437–1447. 2003. View Article : Google Scholar : PubMed/NCBI
|
54
|
Evans AJ, Russell RC, Roche O, Burry TN,
Fish JE, Chow VW, Kim WY, Saravanan A, Maynard MA, Gervais ML,
Sufan RI, Roberts AM, Wilson LA, Betten M, Vandewalle C, Berx G,
Marsden PA, Irwin MS, Teh BT, Jewett MA and Ohh M: VHL promotes E2
box-dependent E-cadherin transcription by HIF-mediated regulation
of SIP1 and snail. Mol Cell Biol. 27:157–169. 2007. View Article : Google Scholar : PubMed/NCBI
|