1
|
Lister PD, Wolter DJ and Hanson ND:
Antibacterial-resistant Pseudomonas aeruginosa: clinical
impact and complex regulation of chromosomally encoded resistance
mechanisms. Clin Microbiol Rev. 22:582–610. 2009.PubMed/NCBI
|
2
|
Yong D, Toleman MA, Giske CG, et al:
Characterization of a new metallo-lactamase gene, bla NDM-1 and a
novel erythromycin esterase gene carried on a unique genetic
structure in Klebsiella pneumoniae sequence type 14 from
India. Antimicrob Agents Chemother. 53:5046–5054. 2009. View Article : Google Scholar : PubMed/NCBI
|
3
|
Papanicolaou GA, Medeiros AA and Jacoby
GA: Novel plasmid-mediated beta-lactamase (MIR-1) conferring
resistance to oxyimino- and alpha-methoxy beta-lactams in clinical
isolates of Klebsiella pneumoniae. Antimicrob Agents
Chemother. 34:2200–2209. 1990. View Article : Google Scholar : PubMed/NCBI
|
4
|
Driscoll JA, Brody SL and Kollef MH: The
epidemiology, pathogenesis and treatment of Pseudomonas
aeruginosa infections. Drugs. 67:351–368. 2007. View Article : Google Scholar : PubMed/NCBI
|
5
|
Obritsch MD, Fish DN, MacLaren R and Jung
R: National surveillance of antimicrobial resistance in
Pseudomonas aeruginosa isolates obtained from intensive care
unit patients from 1993 to 2002. Antimicrob Agents Chemother.
48:4606–4610. 2004.PubMed/NCBI
|
6
|
Zhanel GG, DeCobry M, Adam H, et al:
Prevalence of antimicrobial-resistant pathogens in Canadian
hospitals: results of the Canadian Ward Surveillance Study (CANWARD
2008). Antimicrob Agents Chemother. 54:4684–4693. 2010. View Article : Google Scholar : PubMed/NCBI
|
7
|
Weldhagen GF, Poirel L and Nordmann P:
Ambler class A extended-spectrum beta-lactamases in Pseudomonas
aeruginosa: novel developments and clinical impact. Antimicrob
Agents Chemother. 47:2385–2392. 2003. View Article : Google Scholar : PubMed/NCBI
|
8
|
Moyá B, Zamorano L, Juan C, Ge Y and
Oliver A: Affinity of the new cephalosporin CXA-101 to
penicillin-binding proteins of Pseudomonas aeruginosa.
Antimicrob Agents Chemother. 54:3933–3937. 2010.PubMed/NCBI
|
9
|
Burmolle M, Thomsen TR, Fazli M, et al:
Biofilmsin chronic infections - a matter of opportunity -
monospecies biofilms in multispecies infections. FEMS Immunol Med
Microbiol. 59:324–336. 2010.PubMed/NCBI
|
10
|
del Pozo JL and Patel R: The challenge of
treating biofilm-associated bacterial infections. Clin Pharmacol
Ther. 82:204–209. 2007.PubMed/NCBI
|
11
|
Pfeifer Y, Cullik A and Witte W:
Resistance to cephalosporins and carbapenems in gram-negative
bacterial pathogens. Int J Med Microbiol. 300:371–379. 2010.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Nikaido H: Outer membrane barrier as a
mechanism of antimicrobial resistance. Antimicrob Agents Chemother.
33:1831–1836. 1989. View Article : Google Scholar : PubMed/NCBI
|
13
|
Wikler MA, Cockerill FR, Craig WA, et al:
Methods for Dilution Antimicrobial Susceptibility Tests for
Bacteria that Grow Aerobically. 7th edition. Clinical and
Laboratory Standards Institute; Wayne, PA: 2006
|
14
|
Vincent JL: Nosocomial infections in adult
intensive care units. Lancet. 361:2068–2077. 2003. View Article : Google Scholar : PubMed/NCBI
|
15
|
Carmeli Y, Troillet N, Eliopoulos GM and
Samore MS: Emergence of antibiotic-resistant Pseudomonas
aeruginosa: comparison of risk associated with different
antipseudomonal agents. Antimicrob Agents Chemother. 43:1379–1382.
1999.PubMed/NCBI
|
16
|
Cavallo JD, Fabre R, Leblanc F,
Nicolas-Chanoine MH and Thabaut A: Antibiotic susceptibility and
mechanisms of beta-lactam resistance in 1310 strains of
Pseudomonas aeruginosa: a French multicentre study (1996). J
Antimicrob Chemother. 46:133–136. 2000. View Article : Google Scholar : PubMed/NCBI
|
17
|
Livermore DM: Multiple mechanisms of
antimicrobial resistance in Pseudomonas aeruginosa: our
worst nightmare? Clin Infect Dis. 34:634–640. 2002. View Article : Google Scholar : PubMed/NCBI
|
18
|
Thomson KS: Controversies about
extended-spectrum and AmpC beta-lactamases. Emerg Infect Dis.
7:333–336. 2001. View Article : Google Scholar : PubMed/NCBI
|
19
|
Tan TY, Ng LS, He J, Koh TH and Hsu LY:
Evaluation of screening methods to detect plasmid mediated AmpC in
Escherichia coli, Klebsiella pneumoniae and
Proteus mirabilis. Antimicrob Agents Chemother. 53:146–149.
2009. View Article : Google Scholar : PubMed/NCBI
|
20
|
Abdalhamid B, Wickman PA and Hanson ND:
Correlation of ampC induction with PBP binding in Enterobacter
cloacae. In: 45th Intersci Conf Antimicrob Agents Chemother;
Washington DC. pp. C1–2211. 2005
|
21
|
Kuga A, Okamoto R and Inoue M: AmpR gene
mutations that greatly increase class C beta-lactamase activity in
Enterobacter cloacae. Antimicrob Agents Chemother.
44:561–567. 2000. View Article : Google Scholar : PubMed/NCBI
|
22
|
Pfeifer Y, Cullik A and Witte W:
Resistance to cephalosporins and carbapenems in Gram-negative
bacterial pathogens. Int J Med Microbiol. 300:371–379. 2010.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Shahid M, Malik A and Sheeba:
Multidrug-resistant Pseudomonas aeruginosa strains
harbouring R-plasmids and AmpC beta-lactamases isolated from
hospitalised burn patients in a tertiary care hospital of North
India. FEMS Microbiol Lett. 228:181–186. 2003.
|
24
|
Lee SH, Kim JY, Shin SH, et al:
Dissemination of SHV-12 and characterization of new AmpC-type
beta-lactamases genes among clinical isolates of
Enterobacter Species in Korea. J Clin Microbiol.
41:2477–2482. 2003. View Article : Google Scholar : PubMed/NCBI
|