1
|
Tan HB, Zhong YS, Cheng Y and Shen X:
Rho/ROCK pathway and neural regeneration: a potential therapeutic
target for central nervous system and optic nerve damage. Int J
Ophthalmol. 4:652–657. 2011.PubMed/NCBI
|
2
|
Lingor P, Teusch N, Schwarz K, Mueller R,
Mack H, Bähr M and Mueller BK: Inhibition of Rho kinase (ROCK)
increases neurite outgrowth on chondroitin sulphate proteoglycan in
vitro and axonal regeneration in the adult optic nerve in vivo. J
Neurochem. 103:181–189. 2007.PubMed/NCBI
|
3
|
Lingor P, Tönges L, Pieper N, Bermel C,
Barski E, Planchamp V and Bähr M: ROCK inhibition and CNTF interact
on intrinsic signalling pathways and differentially regulate
survival and regeneration in retinal ganglion cells. Brain. 131(Pt
1): 250–263. 2008.PubMed/NCBI
|
4
|
Zhang Z, Ottens AK, Larner SF, Kobeissy
FH, Williams ML, Hayes RL and Wang KK: Direct Rho-associated kinase
inhibition [correction of inhibition] induces cofilin
dephosphorylation and neurite outgrowth in PC-12 cells. Cell Mol
Biol Lett. 11:12–29. 2006.
|
5
|
Dergham P, Ellezam B, Essagian C,
Avedissian H, Lubell WD and McKerracher L: Rho signaling pathway
targeted to promote spinal cord repair. J Neurosci. 22:6570–6577.
2002.PubMed/NCBI
|
6
|
Chan CC, Khodarahmi K, Liu J, Sutherland
D, Oschipok LW, Steeves JD and Tetzlaff W: Dose-dependent
beneficial and detrimental effects of ROCK inhibitor Y27632 on
axonal sprouting and functional recovery after rat spinal cord
injury. Exp Neurol. 196:352–364. 2005. View Article : Google Scholar : PubMed/NCBI
|
7
|
Sakanaka M, Wen TC, Matsuda S, Masuda S,
Morishita E, Nagao M and Sasaki R: In vivo evidence that
erythropoietin protects neurons from ischemic damage. Proc Natl
Acad Sci USA. 95:4635–4640. 1998. View Article : Google Scholar : PubMed/NCBI
|
8
|
Bernaudin M, Marti HH, Roussel S, Divoux
D, Nouvelot A, Mackenzie ET and Petit E: A potential role for
erythropoietin in focal permanent cerebral ischemia in mice. J
Cereb Blood Flow Metab. 19:643–651. 1999. View Article : Google Scholar : PubMed/NCBI
|
9
|
Brines ML, Ghezzi P, Keenan S, Agnello D,
de Lanerolle NC, Cerami C, Itri LM and Cerami A: Erythropoietin
crosses the blood-brain barrier to protect against experimental
brain injury. Proc Natl Acad Sci USA. 97:10526–10531. 2000.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Calapai G, Marciano MC, Corica F, Allegra
A, Parisi A, Frisina N, Caputi AP and Buemi M: Erythropoietin
protects against brain ischemic injury by inhibition of nitric
oxide formation. Eur J Pharmacol. 401:349–356. 2000. View Article : Google Scholar : PubMed/NCBI
|
11
|
Celik M, Gökmen N, Erbayraktar S,
Akhisaroglu M, Konakc S, Ulukus C, Genc S, Genc K, Sagiroglu E,
Cerami A and Brines M: Erythropoietin prevents motor neuron
apoptosis and neurologic disability in experimental spinal cord
ischemic injury. Proc Natl Acad Sci USA. 99:2258–2263. 2002.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Gorio A, Gökmen N, Erbayraktar S, Yilmaz
O, Madaschi L, Cichetti C, Di Giulio AM, Vardar E, Cerami A and
Brines M: Recombinant human erythropoietin counteracts secondary
injury and markedly enhances neurological recovery from
experimental spinal cord trauma. Proc Natl Acad Sci USA.
99:9450–9455. 2002. View Article : Google Scholar
|
13
|
Sekiguchi Y, Kikuchi S, Myers RR and
Campna WM: ISSLS prize winner: erythropoietin inhibits spinal
neuronal apoptosis and pain following nerve root crush. Spine.
28:2577–2584. 2003. View Article : Google Scholar : PubMed/NCBI
|
14
|
Tsai JC, Wu L, Worgul B, Forbes M and Cao
J: Intravitreal administration of erythropoietin and preservation
of retinal ganglion cells in an experimental rat model of glaucoma.
Curr Eye Res. 30:1025–1031. 2005. View Article : Google Scholar : PubMed/NCBI
|
15
|
Zhong YS, Liu XH, Cheng Y and Min YJ:
Erythropoietin with retrobulbar administration protects retinal
ganglion cells from acute elevated intraocular pressure in rats. J
Ocular Pharmacol Ther. 24:453–459. 2008. View Article : Google Scholar
|
16
|
Weishaupt JH, Rohde G, Pölking E, Siren
AL, Ehrenreich H and Bähr M: Effect of erythropoietin
axotomy-induced apoptosis in rat retinal ganglion cells. Invest
Ophthalmol Vis Sci. 45:1514–1522. 2004. View Article : Google Scholar : PubMed/NCBI
|
17
|
Kilic Ü, Kilic E, Soliz J, Bassetti Cl,
Gassmann M and Hermann DM: Erythropoietin protects from
axotomy-induced degeneration of retinal ganglion cells by
activating ERK-1/-2. FASEB J. 19:249–251. 2005.PubMed/NCBI
|
18
|
Junk AK, Mammis A, Savitz SI, Singh M,
Roth S, Malhotra S, Rosenbaum PS, Cerami A, Brines M and Rosenbaum
DM: Erythropoietin administration protects retinal neurons from
acute ischemia reperfusion injury. Proc Natl Acad Sci USA.
99:10659–10664. 2002. View Article : Google Scholar : PubMed/NCBI
|
19
|
King CE, Rodger J, Bartlett C, Esmaili T,
Dunlop SA and Beazley LD: Erythropoietin is both neuroprotective
and neuroregenerative following optic nerve transection. Exp
Neurol. 205:48–55. 2007. View Article : Google Scholar : PubMed/NCBI
|
20
|
Pacary E, Tixier E, Coulet F, Roussel S,
Petit E and Bernaudin M: Crosstalk between HIF-1 and ROCK pathways
in neuronal differentiation of mesenchymal stem cells, neurospheres
and in PC12 neurite outgrowth. Mol Cell Neurosci. 35:409–423. 2007.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Romijn HJ: Development and advantages of
serum-free, chemically defined nutrient media for culturing of
nerve tissue. Biol Cell. 63:263–268. 1988. View Article : Google Scholar : PubMed/NCBI
|
22
|
Caffé AR, Ahuja P, Holmqvist B, Azadi S,
Forsell J, Holmqvist I, Söderpalm AK and van Veen T: Mouse retina
explants after long-term culture in serum free medium. J Chem
Neuroanat. 22:263–273. 2001.PubMed/NCBI
|
23
|
Zhong Y, Yao H, Deng L, Cheng Y and Zhou
X: Promotion of neurite outgrowth and protective effect of
erythropoietin on the retinal neurons of rats. Graefes Arch Clin
Exp Ophthalmol. 245:1859–1867. 2007. View Article : Google Scholar : PubMed/NCBI
|
24
|
Kim BK, Kim HM, Chung KS, Kim DM, Park SK,
Song A, Won KJ, Lee K, Oh YK, Lee K, et al: Upregulation of RhoB
via c-Jun N-terminal kinase signaling induces apoptosis of the
human gastric carcinoma NUGC-3 cells treated with NSC12618.
Carcinogenesis. 32:254–261. 2011. View Article : Google Scholar : PubMed/NCBI
|
25
|
Nakamura M, Nagano T, Chikama T and
Nishida T: Role of the small GTP-binding protein Rho in epithelial
cell migration in the rabbit cornea. Invest Ophthalmol Vis Sci.
42:941–947. 2001.PubMed/NCBI
|
26
|
Dubreuil CI, Winton MJ and McKerracher L:
Rho activation patterns after spinal cord injury and the role of
activated Rho in apoptosis in the central nervous system. J Cell
Biol. 162:233–243. 2003. View Article : Google Scholar : PubMed/NCBI
|
27
|
Ahmed Z, Suggate EL, Brown ER, Dent RG,
Armstrong SJ, Barrett LB, Berry M and Logan A: Schwann cell-derived
factor-induced modulation of the NgR/p75NTR/EGFR axis disinhibits
axon growth through CNS myelin in vivo and in vitro. Brain. 129(Pt
6): 1517–1533. 2006. View Article : Google Scholar : PubMed/NCBI
|
28
|
Sivasankaran R, Pei J, Wang KC, Zhang YP,
Shields CB, Xu XM and He Z: PKC mediates inhibitory effects of
myelin and chondroitin sulfate proteoglycans on axonal
regeneration. Nat Neurosci. 7:261–268. 2004. View Article : Google Scholar : PubMed/NCBI
|
29
|
Zhou FQ, Walzer M, Wu YH, Zhou J, Dedhar S
and Snider WD: Neurotrophins support regenerative axon assembly
over CSPGs by an ECM-integrin-independent mechanism. J Cell Sci.
119(Pt 13): 2787–2796. 2006. View Article : Google Scholar : PubMed/NCBI
|
30
|
Douglas MR, Morrison KC, Jacques SJ,
Leadbeater WE, Gonzalez AM, Berry M, Logan A and Ahmed Z:
Off-target effects of epidermal growth factor receptor antagonists
mediate retinal ganglion cell disinhibited axon growth. Brain.
132(Pt 11): 3102–3121. 2009. View Article : Google Scholar : PubMed/NCBI
|
31
|
Duffy P, Schmandke A, Schmandke A,
Sigworth J, Narumiya S, Cafferty WB and Strittmatter SM:
Rho-associated kinase II (ROCKII) limits axonal growth after trauma
within the adult mouse spinal cord. J Neurosci. 29:15266–15276.
2009. View Article : Google Scholar : PubMed/NCBI
|
32
|
Bhadriraju K, Yang M, Alom Ruiz S, Pirone
D, Tan J and Chen CS: Activation of ROCK by RhoA is regulated by
cell adhesion, shape, and cytoskeletal tension. Exp Cell Res.
313:3616–3623. 2007. View Article : Google Scholar : PubMed/NCBI
|
33
|
Schimchowitsch S and Cassel JC: Polyamine
and aminoguanidine treatments to promote structural and functional
recovery in the adult mammalian brain after injury: a brief
literature review and preliminary data about their combined
administration. J Physiol Paris. 99:221–231. 2006. View Article : Google Scholar
|
34
|
Schweigreiter R, Walmsley AR, Niederöst B,
Zimmermann DR, Oertle T, Casademunt E, Frentzel S, Dechant G, Mir A
and Bandtlow CE: Versican V2 and the central inhibitory domain of
Nogo-A inhibit neurite growth via p75NTR/NgR-independent pathways
that converge at RhoA. Mol Cell Neurosci. 27:163–174. 2004.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Kretz A, Happold CJ, Marticke JK and
Isenmann S: Erythropoietin promotes regeneration of adult CNS
neurons via Jak2/Stat3 and PI3K/AKT pathway activation. Mol Cell
Neurosci. 29:569–579. 2005. View Article : Google Scholar : PubMed/NCBI
|
36
|
Dietz GP, Dietz B and Bähr M: Bcl-x(L)
increases axonal numbers but not axonal elongation from rat retinal
explants. Brain Res Bull. 70:117–123. 2006. View Article : Google Scholar : PubMed/NCBI
|