1
|
Bennett NC, Gardiner RA, Hooper JD,
Johnson DW and Gobe GC: Molecular cell biology of androgen receptor
signalling. Int J Biochem Cell Biol. 42:813–827. 2010. View Article : Google Scholar : PubMed/NCBI
|
2
|
Holzbeierlein J, Lal P, LaTulippe E, Smith
A, Satagopan J, Zhang L, Ryan C, Smith S, Scher H, Scardino P, et
al: Gene expression analysis of human prostate carcinoma during
hormonal therapy identifies androgen-responsive genes and
mechanisms of therapy resistance. Am J Pathol. 164:217–227. 2004.
View Article : Google Scholar
|
3
|
Best CJ, Gillespie JW, Yi Y, Chandramouli
GV, Perlmutter MA, Gathright Y, Erickson HS, Georgevich L, Tangrea
MA, Duray PH, et al: Molecular alterations in primary prostate
cancer after androgen ablation therapy. Clin Cancer Res.
11:6823–6834. 2005. View Article : Google Scholar : PubMed/NCBI
|
4
|
Mostaghel EA, Page ST, Lin DW, Fazli L,
Coleman IM, True LD, Knudsen B, Hess DL, Nelson CC, Matsumoto AM,
et al: Intraprostatic androgens and androgen-regulated gene
expression persist after testosterone suppression: therapeutic
implications for castration-resistant prostate cancer. Cancer Res.
67:5033–5041. 2007. View Article : Google Scholar
|
5
|
Mostaghel EA, Geng L, Holcomb I, Coleman
IM, Lucas J, True LD and Nelson PS: Variability in the androgen
response of prostate epithelium to 5alpha-reductase inhibition:
implications for prostate cancer chemoprevention. Cancer Res.
70:1286–1295. 2010. View Article : Google Scholar : PubMed/NCBI
|
6
|
Majalahti-Palviainen T, Hirvinen M,
Tervonen V, Ilves M, Ruskoaho H and Vuolteenaho O: Gene structure
of a new cardiac peptide hormone: a model for heart-specific gene
expression. Endocrinology. 141:731–740. 2000.PubMed/NCBI
|
7
|
Kamburov A, Wierling C, Lehrach H and
Herwig R: ConsensusPathDB--a database for integrating human
functional interaction networks. Nucleic Acids Res. 37:D623–D628.
2009. View Article : Google Scholar : PubMed/NCBI
|
8
|
Edgar R, Domrachev M and Lash AE: Gene
expression Omnibus: NCBI gene expression and hybridization array
data repository. Nucleic Acids Res. 30:207–210. 2002. View Article : Google Scholar : PubMed/NCBI
|
9
|
Dahlman A, Edsjö A, Halldén C, Persson JL,
Fine SW, Lilja H, Gerald W and Bjartell A: Effect of androgen
deprivation therapy on the expression of prostate cancer biomarkers
MSMB and MSMB-binding protein CRISP3. Prostate Cancer Prostatic
Dis. 13:369–375. 2010. View Article : Google Scholar : PubMed/NCBI
|
10
|
Szabo Z, Hamalainen J, Loikkanen I,
Moilanen AM, Hirvikoski P, Vaisanen T, Paavonen TK and Vaarala MH:
Sorbitol dehydrogenase expression is regulated by androgens in the
human prostate. Oncol Rep. 23:1233–1239. 2010.PubMed/NCBI
|
11
|
Bjartell A, Johansson R, Bjork T,
Gadaleanu V, Lundwall A, Lilja H, Kjeldsen L and Udby L:
Immunohistochemical detection of cysteine-rich secretory protein 3
in tissue and in serum from men with cancer or benign enlargement
of the prostate gland. Prostate. 66:591–603. 2006. View Article : Google Scholar : PubMed/NCBI
|
12
|
Srikantan V, Zou Z, Petrovics G, Xu L,
Augustus M, Davis L, Livezey JR, Connell T, Sesterhenn IA, Yoshino
K, et al: PCGEM1, a prostate-specific gene, is overexpressed in
prostate cancer. Proc Natl Acad Sci USA. 97:12216–12221. 2000.
View Article : Google Scholar : PubMed/NCBI
|
13
|
de Kok JB, Verhaegh GW, Roelofs RW,
Hessels D, Kiemeney LA, Aalders TW, Swinkels DW and Schalken JA:
DD3(PCA3), a very sensitive and specific marker to detect prostate
tumors. Cancer Res. 62:2695–2698. 2002.
|
14
|
Xu LL, Stackhouse BG, Florence K, Zhang W,
Shanmugam N, Sesterhenn IA, Zou Z, Srikantan V, Augustus M, Roschke
V, et al: PSGR, a novel prostate-specific gene with homology to a G
protein-coupled receptor, is overexpressed in prostate cancer.
Cancer Res. 60:6568–6572. 2000.PubMed/NCBI
|
15
|
Platz EA, Till C, Goodman PJ, Parnes HL,
Figg WD, Albanes D, Neuhouser ML, Klein EA, Thompson IM Jr and
Kristal AR: Men with low serum cholesterol have a lower risk of
high-grade prostate cancer in the placebo arm of the prostate
cancer prevention trial. Cancer Epidemiol Biomarkers Prev.
18:2807–2813. 2009. View Article : Google Scholar : PubMed/NCBI
|
16
|
Murtola TJ, Tammela TL, Lahtela J and
Auvinen A: Cholesterol-lowering drugs and prostate cancer risk: a
population-based case-control study. Cancer Epidemiol Biomarkers
Prev. 16:2226–2232. 2007. View Article : Google Scholar : PubMed/NCBI
|
17
|
Leon CG, Locke JA, Adomat HH, Etinger SL,
Twiddy AL, Neumann RD, Nelson CC, Guns ES and Wasan KM: Alterations
in cholesterol regulation contribute to the production of
intratumoral androgens during progression to castration-resistant
prostate cancer in a mouse xenograft model. Prostate. 70:390–400.
2010.
|
18
|
Mol AJ, Geldof AA, Meijer GA, van der Poel
HG and van Moorselaar RJ: New experimental markers for early
detection of high-risk prostate cancer: role of cell-cell adhesion
and cell migration. J Cancer Res Clin Oncol. 133:687–695. 2007.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Leav I, Galluzzi CM, Ziar J, Stork PJ, Ho
SM and Loda M: Mitogen-activated protein kinase and
mitogen-activated kinase phosphatase-1 expression in the Noble rat
model of sex hormone-induced prostatic dysplasia and carcinoma. Lab
Invest. 75:361–370. 1996.PubMed/NCBI
|
20
|
Magi-Galluzzi C, Mishra R, Fiorentino M,
Montironi R, Yao H, Capodieci P, Wishnow K, Kaplan I, Stork PJ and
Loda M: Mitogen-activated protein kinase phosphatase 1 is
overexpressed in prostate cancers and is inversely related to
apoptosis. Lab Invest. 76:37–51. 1997.PubMed/NCBI
|
21
|
Rauhala HE, Porkka KP, Tolonen TT,
Martikainen PM, Tammela TL and Visakorpi T: Dual-specificity
phosphatase 1 and serum/glucocorticoid-regulated kinase are
downregulated in prostate cancer. Int J Cancer. 117:738–745. 2005.
View Article : Google Scholar : PubMed/NCBI
|
22
|
King ER, Tung CS, Tsang YT, Zu Z, Lok GT,
Deavers MT, Malpica A, Wolf JK, Lu KH, Birrer MJ, Mok SC, et al:
The anterior gradient homolog 3 (AGR3) gene is associated with
differentiation and survival in ovarian cancer. Am J Surg Pathol.
35:904–912. 2011. View Article : Google Scholar : PubMed/NCBI
|
23
|
Fletcher GC, Patel S, Tyson K, Adam PJ,
Schenker M, Loader JA, Daviet L, Legrain P, Parekh R, Harris AL and
Terrett JA: hAG-2 and hAG-3, human homologues of genes involved in
differentiation, are associated with oestrogen receptor-positive
breast tumours and interact with metastasis gene C4.4a and
dystroglycan. Br J Cancer. 88:579–585. 2003. View Article : Google Scholar : PubMed/NCBI
|
24
|
Rafnar T, Vermeulen SH, Sulem P,
Thorleifsson G, Aben KK, Witjes JA, Grotenhuis AJ, Verhaegh GW,
Hulsbergen-van de Kaa CA, Besenbacher S, et al: European
genome-wide association study identifies SLC14A1 as a new urinary
bladder cancer susceptibility gene. Hum Mol Genet. 20:4268–4281.
2011. View Article : Google Scholar : PubMed/NCBI
|
25
|
Henttu P and Vihko P: Prostate-specific
antigen and human glandular kallikrein: two kallikreins of the
human prostate. Ann Med. 26:157–164. 1994. View Article : Google Scholar : PubMed/NCBI
|
26
|
Young CY, Andrews PE and Tindall DJ:
Expression and androgenic regulation of human prostate-specific
kallikreins. J Androl. 16:97–99. 1995.PubMed/NCBI
|