Interaction between cAMP, volume‑regulated anion channels and the Na+‑HCO3‑‑cotransporter, NBCe1, in the regulation of nutrient‑ and hypotonicity‑induced insulin release from isolated rat pancreatic islets and tumoral insulin‑producing BRIN‑BD11 cells

  • Authors:
    • Nurdan Bulur
    • Raphael Crutzen
    • Willy J. Malaisse
    • Abdullah Sener
    • Renaud Beauwens
    • Philippe Golstein
  • View Affiliations

  • Published online on: February 28, 2013     https://doi.org/10.3892/mmr.2013.1346
  • Pages: 1666-1672
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Soluble adenylyl cyclase (sAC) has been hypothesized to play a role in insulin secretion. The present study aimed to investigate the interaction between adenosine 3',5'‑cyclic monophosphate (cAMP), volume‑regulated anion channels (VRACs) and the electrogenic sodium bicarbonate (Na+‑HCO3‑) cotransporter, NBCe1, in the regulation of nutrient‑ and hypotonicity‑induced insulin release from rat pancreatic islets and tumoral insulin‑producing BRIN‑BD11 cells. In the islets, 5‑nitro‑2‑(3‑phenylpropylamino)benzoic acid (NPPB) and 5‑chloro‑2‑hydroxy‑3‑(thiophene‑2‑carbonyl)indole‑1‑carboxamide (tenidap) reduced glucose‑stimulated insulin release, however, only NPPB suppressed the enhancing action of cAMP analogs upon such a release. Insulin output from the BRIN‑BD11 cells was stimulated by 2‑ketoisocaproate (KIC) or extracellular hypoosmolarity. cAMP analogs and 3‑isobutyl‑1‑methylxanthine increased the insulin output recorded in the isotonic medium to a greater relative extent than that in the hypotonic medium. The secretory response to KIC or hypotonicity was inhibited by NPPB or tenidap, which both also opposed the enhancing action of cAMP analogs. Inhibitors of mitogen‑activated protein (MAP) kinase decreased insulin output in isotonic and hypotonic media. The inhibitor of sAC, 2‑hydroxyestriol, caused only a modest inhibition of insulin release, whether in the isotonic or hypotonic medium, even when tested at a concentration of 100 µM. The omission of NaHCO3 markedly decreased the secretory response to KIC or extracellular hypotonicity. The omission of Na+ suppressed the secretory response to extracellular hypotonicity. The observations of the present study do not support the hypothesis of a major role for sAC in the regulation of insulin release.
View Figures
View References

Related Articles

Journal Cover

May 2013
Volume 7 Issue 5

Print ISSN: 1791-2997
Online ISSN:1791-3004

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
x
Spandidos Publications style
Bulur N, Crutzen R, Malaisse WJ, Sener A, Beauwens R and Golstein P: Interaction between cAMP, volume‑regulated anion channels and the Na+‑HCO3‑‑cotransporter, NBCe1, in the regulation of nutrient‑ and hypotonicity‑induced insulin release from isolated rat pancreatic islets and tumoral insulin‑producing BRIN‑BD11 cells. Mol Med Rep 7: 1666-1672, 2013
APA
Bulur, N., Crutzen, R., Malaisse, W.J., Sener, A., Beauwens, R., & Golstein, P. (2013). Interaction between cAMP, volume‑regulated anion channels and the Na+‑HCO3‑‑cotransporter, NBCe1, in the regulation of nutrient‑ and hypotonicity‑induced insulin release from isolated rat pancreatic islets and tumoral insulin‑producing BRIN‑BD11 cells. Molecular Medicine Reports, 7, 1666-1672. https://doi.org/10.3892/mmr.2013.1346
MLA
Bulur, N., Crutzen, R., Malaisse, W. J., Sener, A., Beauwens, R., Golstein, P."Interaction between cAMP, volume‑regulated anion channels and the Na+‑HCO3‑‑cotransporter, NBCe1, in the regulation of nutrient‑ and hypotonicity‑induced insulin release from isolated rat pancreatic islets and tumoral insulin‑producing BRIN‑BD11 cells". Molecular Medicine Reports 7.5 (2013): 1666-1672.
Chicago
Bulur, N., Crutzen, R., Malaisse, W. J., Sener, A., Beauwens, R., Golstein, P."Interaction between cAMP, volume‑regulated anion channels and the Na+‑HCO3‑‑cotransporter, NBCe1, in the regulation of nutrient‑ and hypotonicity‑induced insulin release from isolated rat pancreatic islets and tumoral insulin‑producing BRIN‑BD11 cells". Molecular Medicine Reports 7, no. 5 (2013): 1666-1672. https://doi.org/10.3892/mmr.2013.1346