Local gene transfection in the cochlea (Review)
- Authors:
- Li Xia
- Shankai Yin
-
Affiliations: Department of Otolaryngology, The Sixth People's Hospital Affiliated to The Shanghai Jiao Tong University, Otolaryngology Institute of The Shanghai Jiao Tong University, Shanghai 200233, P.R. China - Published online on: May 28, 2013 https://doi.org/10.3892/mmr.2013.1496
- Pages: 3-10
This article is mentioned in:
Abstract
Henry KR, Chole RA, McGinn MD and Frush DP: Increased ototoxicity in both young and old mice. Arch Otolaryngol. 107:92–95. 1981. View Article : Google Scholar : PubMed/NCBI | |
Ishiyama G, Ishiyama A, Kerber K and Baloh RW: Gentamicin ototoxicity: clinical features and the effect on the human vestibulo-ocular reflex. Acta Otolaryngol. 126:1057–1061. 2006. View Article : Google Scholar : PubMed/NCBI | |
Eshraghi AA, Frachet B, Van De Water TR and Eter E: Hearing loss in adults. Rev Prat. 59:645–652. 2009.(In French). | |
Fetoni AR, Mancuso C, Eramo SL, et al: In vivo protective effect of ferulic acid against noise-induced hearing loss in the guinea pig. Neuroscience. 169:1575–1588. 2010. View Article : Google Scholar : PubMed/NCBI | |
Campbell KC, Meech RP, Klemens JJ, et al: Prevention of noise- and drug-induced hearing loss with D-methionine. Hear Res. 226:92–103. 2007. View Article : Google Scholar : PubMed/NCBI | |
Lee CK, Shin JI and Cho YS: Protective effect of minocycline against cisplatin-induced ototoxicity. Clin Exp Otorhinolaryngol. 4:77–82. 2011. View Article : Google Scholar : PubMed/NCBI | |
Maniu A, Perde-Schrepler M and Cosgarea M: Protective effect of L-N-acetylcysteine against gentamycin ototoxicity in the organ cultures of the rat cochlea. Rom J Morphol Embryol. 52:159–164. 2011.PubMed/NCBI | |
Agrup C, Gleeson M and Rudge P: The inner ear and the neurologist. J Neurol Neurosurg Psychiatry. 78:114–122. 2007. View Article : Google Scholar : PubMed/NCBI | |
Swan EE, Mescher MJ, Sewell WF, Tao SL and Borenstein JT: Inner ear drug delivery for auditory applications. Adv Drug Deliv Rev. 60:1583–1599. 2008. View Article : Google Scholar : PubMed/NCBI | |
Staecker H, Gabaizadeh R, Federoff H and Van De Water TR: Brain-derived neurotrophic factor gene therapy prevents spiral ganglion degeneration after hair cell loss. Otolaryngol Head Neck Surg. 119:7–13. 1998.PubMed/NCBI | |
Suzuki M, Yamasoba T, Suzukawa K and Kaga K: Adenoviral vector gene delivery via the round window membrane in guinea pigs. Neuroreport. 14:1951–1955. 2003. View Article : Google Scholar : PubMed/NCBI | |
Duan M, Venail F, Spencer N and Mezzina M: Treatment of peripheral sensorineural hearing loss: gene therapy. Gene Ther. 11(Suppl 1): S51–S56. 2004. View Article : Google Scholar : PubMed/NCBI | |
Praetorius M, Pfannenstiel S, Klingmann C, Baumann I, Plinkert PK and Staecker H: Expression patterns of non-viral transfection with GFP in the organ of Corti in vitro and in vivo. Gene therapy of the inner ear with non-viral vectors. HNO. 56:524–529. 2008.(In German). | |
Cooper LB, Chan DK, Roediger FC, et al: AAV-mediated delivery of the caspase inhibitor XIAP protects against cisplatin ototoxicity. Otol Neurotol. 27:484–490. 2006. View Article : Google Scholar : PubMed/NCBI | |
Jiang M, Zhang YQ, He GX and Sun H: Protective effect of NT-3 gene mediated by hydroxyapatite nanoparticle on the cochlea of guinea pigs injured by excitotoxicity. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 32:563–567. 2007.(In Chinese). | |
Kawamoto K, Ishimoto S, Minoda R, Brough DE and Raphael Y: Math1 gene transfer generates new cochlear hair cells in mature guinea pigs in vivo. J Neurosci. 23:4395–4400. 2003.PubMed/NCBI | |
Ylikoski J, Pirvola U, Virkkala J, et al: Guinea pig auditory neurons are protected by glial cell line-derived growth factor from degeneration after noise trauma. Hear Res. 124:17–26. 1998. View Article : Google Scholar : PubMed/NCBI | |
Ghilardi JR, Freeman KT, Jimenez-Andrade JM, et al: Sustained blockade of neurotrophin receptors TrkA, TrkB and TrkC reduces non-malignant skeletal pain but not the maintenance of sensory and sympathetic nerve fibers. Bone. 48:389–398. 2011. View Article : Google Scholar : PubMed/NCBI | |
Michael AE, Collins TD, Norgate DP, Gregory L, Wood PJ and Cooke BA: Relationship between ovarian cortisol:cortisone ratios and the clinical outcome of in vitro fertilization and embryo transfer (IVF-ET). Clin Endocrinol (Oxf). 51:535–540. 1999. View Article : Google Scholar : PubMed/NCBI | |
Carnicero E, Garrido JJ, Alonso MT and Schimmang T: Roles of fibroblast growth factor 2 during innervation of the avian inner ear. J Neurochem. 77:786–795. 2001. View Article : Google Scholar : PubMed/NCBI | |
Frolenkov GI, Belyantseva IA, Kurc M, Mastroianni MA and Kachar B: Cochlear outer hair cell electromotility can provide force for both low and high intensity distortion product otoacoustic emissions. Hear Res. 126:67–74. 1998. View Article : Google Scholar : PubMed/NCBI | |
Liberman MC, Zuo J and Guinan JJ Jr: Otoacoustic emissions without somatic motility: can stereocilia mechanics drive the mammalian cochlea? J Acoust Soc Am. 116:1649–1655. 2004. View Article : Google Scholar : PubMed/NCBI | |
Ye HB, Shi HB, Wang J, et al: Bilirubin induces auditory neuropathy in neonatal guinea pigs via auditory nerve fiber damage. J Neurosci Res. 90:2201–2213. 2012. View Article : Google Scholar : PubMed/NCBI | |
El-Badry MM and McFadden SL: Electrophysiological correlates of progressive sensorineural pathology in carboplatin-treated chinchillas. Brain Res. 1134:122–130. 2007. View Article : Google Scholar : PubMed/NCBI | |
Xia L, Yin S and Wang J: Inner ear gene transfection in neonatal mice using adeno-associated viral vector: a comparison of two approaches. PLoS One. 7:e432182012. View Article : Google Scholar : PubMed/NCBI | |
Landry TG, Wise AK, Fallon JB and Shepherd RK: Spiral ganglion neuron survival and function in the deafened cochlea following chronic neurotrophic treatment. Hear Res. 282:303–313. 2011. View Article : Google Scholar : PubMed/NCBI | |
Walton JP, Barsz K and Wilson WW: Sensorineural hearing loss and neural correlates of temporal acuity in the inferior colliculus of the C57BL/6 mouse. J Assoc Res Otolaryngol. 9:90–101. 2008. View Article : Google Scholar : PubMed/NCBI | |
Wang H, Yin S, Yu Z, Huang Y and Wang J: Dynamic changes in hair cell stereocilia and cochlear transduction after noise exposure. Biochem Biophys Res Commun. 409:616–621. 2011. View Article : Google Scholar : PubMed/NCBI | |
Yang SM, Doi T, Asako M, Matsumoto A and Yamashita T: Optical recording of membrane potential in dissociated mouse vestibular ganglion cells using a voltage-sensitive dye. Auris Nasus Larynx. 27:15–21. 2000. View Article : Google Scholar : PubMed/NCBI | |
Poirrier AL, Van den Ackerveken P, Kim TS, et al: Ototoxic drugs: difference in sensitivity between mice and guinea pigs. Toxicol Lett. 193:41–49. 2010. View Article : Google Scholar : PubMed/NCBI | |
Ishimoto S, Kawamoto K, Stöver T, Kanzaki S, Yamasoba T and Raphael Y: A glucocorticoid reduces adverse effects of adenovirus vectors in the cochlea. Audiol Neurootol. 8:70–79. 2003. View Article : Google Scholar : PubMed/NCBI | |
Wang H, Murphy R, Taaffe D, et al: Efficient cochlear gene transfection in guinea-pigs with adeno-associated viral vectors by partial digestion of round window membrane. Gene Ther. 19:255–263. 2012. View Article : Google Scholar : PubMed/NCBI | |
Maeda Y, Fukushima K, Kawasaki A, Nishizaki K and Smith RJ: Cochlear expression of a dominant-negative GJB2R75W construct delivered through the round window membrane in mice. Neurosci Res. 58:250–254. 2007. View Article : Google Scholar : PubMed/NCBI | |
Sun H, Jiang M and Zhu SH: In vitro and in vivo studies on hydroxyapatite nanoparticles as a novel vector for inner ear gene therapy. Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi. 43:51–57. 2008.(In Chinese). | |
Lalwani AK and Mhatre AN: Cochlear gene therapy. Ear Hear. 24:342–348. 2003. View Article : Google Scholar : PubMed/NCBI | |
Thomas CE, Ehrhardt A and Kay MA: Progress and problems with the use of viral vectors for gene therapy. Nat Rev Genet. 4:346–358. 2003. View Article : Google Scholar : PubMed/NCBI | |
Dimitrov EA and Duckert LG: Morphologic changes in the guinea pig cochlea following cochleostomy - a preliminary scanning electron microscope study. Otolaryngol Head Neck Surg. 93:408–413. 1985. | |
Iizuka T, Kanzaki S, Mochizuki H, et al: Noninvasive in vivo delivery of transgene via adeno-associated virus into supporting cells of the neonatal mouse cochlea. Hum Gene Ther. 19:384–390. 2008. View Article : Google Scholar : PubMed/NCBI | |
Kesser BW and Lalwani AK: Gene therapy and stem cell transplantation: strategies for hearing restoration. Adv Otorhinolaryngol. 66:64–86. 2009.PubMed/NCBI | |
Newton VE: Aetiology of bilateral sensori-neural hearing loss in young children. J Laryngol Otol Suppl. 10:1–57. 1985.PubMed/NCBI | |
Qu C, Gardner P and Schrijver I: The role of the cytoskeleton in the formation of gap junctions by Connexin 30. Exp Cell Res. 315:1683–1692. 2009. View Article : Google Scholar : PubMed/NCBI | |
Holt JR: Viral-mediated gene transfer to study the molecular physiology of the Mammalian inner ear. Audiol Neurootol. 7:157–160. 2002. View Article : Google Scholar : PubMed/NCBI | |
Yagi M, Magal E, Sheng Z, Ang KA and Raphael Y: Hair cell protection from aminoglycoside ototoxicity by adenovirus-mediated overexpression of glial cell line-derived neurotrophic factor. Hum Gene Ther. 10:813–823. 1999. View Article : Google Scholar : PubMed/NCBI | |
Cheng G, Liu L, Wang P, et al: An in vivo transfection approach elucidates a role for Aedes aegypti thioester-containing proteins in flaviviral infection. PLoS One. 6:e227862011. View Article : Google Scholar : PubMed/NCBI | |
Pfannenstiel SC, Praetorius M, Plinkert PK, Brough DE and Staecker H: Bcl-2 gene therapy prevents aminoglycoside-induced degeneration of auditory and vestibular hair cells. Audiol Neurootol. 14:254–266. 2009. View Article : Google Scholar : PubMed/NCBI | |
Shou J, Zheng JL and Gao WQ: Robust generation of new hair cells in the mature mammalian inner ear by adenoviral expression of Hath1. Mol Cell Neurosci. 23:169–179. 2003. View Article : Google Scholar : PubMed/NCBI | |
Jero J, Mhatre AN, Tseng CJ, et al: Cochlear gene delivery through an intact round window membrane in mouse. Hum Gene Ther. 12:539–548. 2001. View Article : Google Scholar : PubMed/NCBI | |
Derby ML, Sena-Esteves M, Breakefield XO and Corey DP: Gene transfer into the mammalian inner ear using HSV-1 and vaccinia virus vectors. Hear Res. 134:1–8. 1999. View Article : Google Scholar : PubMed/NCBI | |
Lei L and Han D: Efficient transduction of spiral ganglion cells using adenovirus type 5 vector in the rat. Acta Otolaryngol. 130:810–814. 2010. View Article : Google Scholar : PubMed/NCBI | |
Duan ML, Ulfendahl M, Laurell G, et al: Protection and treatment of sensorineural hearing disorders caused by exogenous factors: experimental findings and potential clinical application. Hear Res. 169:169–178. 2002. View Article : Google Scholar | |
Luebke AE, Foster PK, Muller CD and Peel AL: Cochlear function and transgene expression in the guinea pig cochlea, using adenovirus- and adeno-associated virus-directed gene transfer. Hum Gene Ther. 12:773–781. 2001. View Article : Google Scholar : PubMed/NCBI | |
Luebke AE, Steiger JD, Hodges BL and Amalfitano A: A modified adenovirus can transfect cochlear hair cells in vivo without compromising cochlear function. Gene Ther. 8:789–794. 2001. View Article : Google Scholar : PubMed/NCBI | |
Holt JR, Johns DC, Wang S, et al: Functional expression of exogenous proteins in mammalian sensory hair cells infected with adenoviral vectors. J Neurophysiol. 81:1881–1888. 1999.PubMed/NCBI | |
Ishimoto S, Kawamoto K, Stover T, Kanzaki S, Yamasoba T and Raphael Y: A glucocorticoid reduces adverse effects of adenovirus vectors in the cochlea. Audiol Neurootol. 8:70–79. 2003. View Article : Google Scholar : PubMed/NCBI | |
Li Duan M, Bordet T, Mezzina M, Kahn A and Ulfendahl M: Adenoviral and adeno-associated viral vector mediated gene transfer in the guinea pig cochlea. Neuroreport. 13:1295–1299. 2002.PubMed/NCBI | |
Lalwani A, Walsh B, Reilly P, et al: Long-term in vivo cochlear transgene expression mediated by recombinant adeno-associated virus. Gene Ther. 5:277–281. 1998. View Article : Google Scholar : PubMed/NCBI | |
Stone IM, Lurie DI, Kelley MW and Poulsen DJ: Adeno-associated virus-mediated gene transfer to hair cells and support cells of the murine cochlea. Mol Ther. 11:843–848. 2005. View Article : Google Scholar : PubMed/NCBI | |
Lalwani AK, Walsh BJ, Reilly PG, Muzyczka N and Mhatre AN: Development of in vivo gene therapy for hearing disorders: introduction of adeno-associated virus into the cochlea of the guinea pig. Gene Ther. 3:588–592. 1996. | |
Lalwani AK, Walsh BJ, Carvalho GJ, Muzyczka N and Mhatre AN: Expression of adeno-associated virus integrated transgene within the mammalian vestibular organs. Am J Otol. 19:390–395. 1998.PubMed/NCBI | |
Kilpatrick LA, Li Q, Yang J, Goddard JC, Fekete DM and Lang H: Adeno-associated virus-mediated gene delivery into the scala media of the normal and deafened adult mouse ear. Gene Ther. 18:569–578. 2011. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Okada T, Sheykholeslami K, et al: Specific and efficient transduction of Cochlear inner hair cells with recombinant adeno-associated virus type 3 vector. Mol Ther. 12:725–733. 2005. View Article : Google Scholar : PubMed/NCBI | |
Walters RW, Yi SM, Keshavjee S, et al: Binding of adeno-associated virus type 5 to 2,3-linked sialic acid is required for gene transfer. J Biol Chem. 276:20610–20616. 2001. View Article : Google Scholar : PubMed/NCBI | |
Xiao W, Chirmule N, Berta SC, McCullough B, Gao G and Wilson JM: Gene therapy vectors based on adeno-associated virus type 1. J Virol. 73:3994–4003. 1999.PubMed/NCBI | |
Zhong L, Li B, Jayandharan G, et al: Tyrosine-phosphorylation of AAV2 vectors and its consequences on viral intracellular trafficking and transgene expression. Virology. 381:194–202. 2008. View Article : Google Scholar : PubMed/NCBI | |
Chen X, Frisina RD, Bowers WJ, Frisina DR and Federoff HJ: HSV amplicon-mediated neurotrophin-3 expression protects murine spiral ganglion neurons from cisplatin-induced damage. Mol Ther. 3:958–963. 2001. View Article : Google Scholar : PubMed/NCBI | |
Keithley EM, Woolf NK and Harris JP: Development of morphological and physiological changes in the cochlea induced by cytomegalovirus. Laryngoscope. 99:409–414. 1989. View Article : Google Scholar : PubMed/NCBI | |
Stearns GS, Keithley EM and Harris JP: Development of high endothelial venule-like characteristics in the spiral modiolar vein induced by viral labyrinthitis. Laryngoscope. 103:890–898. 1993. View Article : Google Scholar : PubMed/NCBI | |
Ailles LE and Naldini L: HIV-1-derived lentiviral vectors. Curr Top Microbiol Immunol. 261:31–52. 2002.PubMed/NCBI | |
Blomer U, Naldini L, Kafri T, Trono D, Verma IM and Gage FH: Highly efficient and sustained gene transfer in adult neurons with a lentivirus vector. J Virol. 71:6641–6649. 1997.PubMed/NCBI | |
Han JJ, Mhatre AN, Wareing M, et al: Transgene expression in the guinea pig cochlea mediated by a lentivirus-derived gene transfer vector. Hum Gene Ther. 10:1867–1873. 1999. View Article : Google Scholar : PubMed/NCBI | |
Felgner PL, Gadek TR, Holm M, et al: Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc Natl Acad Sci USA. 84:7413–7417. 1987. View Article : Google Scholar : PubMed/NCBI | |
Wareing M, Mhatre AN, Pettis R, et al: Cationic liposome mediated transgene expression in the guinea pig cochlea. Hear Res. 128:61–69. 1999. View Article : Google Scholar : PubMed/NCBI | |
Jero J, Tseng CJ, Mhatre AN and Lalwani AK: A surgical approach appropriate for targeted cochlear gene therapy in the mouse. Hear Res. 151:106–114. 2001. View Article : Google Scholar : PubMed/NCBI | |
Beavis AD: On the inhibition of the mitochondrial inner membrane anion uniporter by cationic amphiphiles and other drugs. J Biol Chem. 264:1508–1515. 1989.PubMed/NCBI | |
Bottega R and Epand RM: Inhibition of protein kinase C by cationic amphiphiles. Biochemistry. 31:9025–9030. 1992. View Article : Google Scholar : PubMed/NCBI | |
Datiles MJ, Johnson EA and McCarty RE: Inhibition of the ATPase activity of the catalytic portion of ATP synthases by cationic amphiphiles. Biochim Biophys Acta. 1777:362–368. 2008. View Article : Google Scholar : PubMed/NCBI | |
Tamura T, Kita T, Nakagawa T, et al: Drug delivery to the cochlea using PLGA nanoparticles. Laryngoscope. 115:2000–2005. 2005. View Article : Google Scholar : PubMed/NCBI | |
Shimamura M, Morishita R, Endoh M, et al: HVJ-envelope vector for gene transfer into central nervous system. Biochem Biophys Res Commun. 300:464–471. 2003. View Article : Google Scholar : PubMed/NCBI | |
Oshima K, Shimamura M, Mizuno S, et al: Intrathecal injection of HVJ-E containing HGF gene to cerebrospinal fluid can prevent and ameliorate hearing impairment in rats. FASEB J. 18:212–214. 2004.PubMed/NCBI | |
Ishimoto S, Kawamoto K, Kanzaki S and Raphael Y: Gene transfer into supporting cells of the organ of Corti. Hear Res. 173:187–197. 2002. View Article : Google Scholar : PubMed/NCBI | |
Yamasoba T, Yagi M, Roessler BJ, Miller JM and Raphael Y: Inner ear transgene expression after adenoviral vector inoculation in the endolymphatic sac. Hum Gene Ther. 10:769–774. 1999. View Article : Google Scholar : PubMed/NCBI | |
Shibata SB, Di Pasquale G, Cortez SR, Chiorini JA and Raphael Y: Gene transfer using bovine adeno-associated virus in the guinea pig cochlea. Gene Ther. 16:990–997. 2009. View Article : Google Scholar : PubMed/NCBI | |
Stover T, Yagi M and Raphael Y: Cochlear gene transfer: round window versus cochleostomy inoculation. Hear Res. 136:124–130. 1999. View Article : Google Scholar : PubMed/NCBI | |
Konishi M, Kawamoto K, Izumikawa M, Kuriyama H and Yamashita T: Gene transfer into guinea pig cochlea using adeno-associated virus vectors. J Gene Med. 10:610–618. 2008. View Article : Google Scholar : PubMed/NCBI | |
Nomura Y, Hara M and Kurata T: Experimental herpes simplex virus and cytomegalovirus labyrinthitis. Acta Otolaryngol Suppl. 457:57–66. 1989.PubMed/NCBI | |
Weiss MA, Frisancho JC, Roessler BJ and Raphael Y: Viral-mediated gene transfer in the cochlea. Int J Dev Neurosci. 15:577–583. 1997. View Article : Google Scholar : PubMed/NCBI | |
Nadol JB Jr: Intercellular junctions in the organ of Corti. Ann Otol Rhinol Laryngol. 87:70–80. 1978. View Article : Google Scholar : PubMed/NCBI | |
Kimura RS: The ultrastructure of the organ of Corti. Int Rev Cytol. 42:173–222. 1975. View Article : Google Scholar : PubMed/NCBI | |
Fritzsch B, Farinas I and Reichardt LF: Lack of neurotrophin 3 causes losses of both classes of spiral ganglion neurons in the cochlea in a region-specific fashion. J Neurosci. 17:6213–6225. 1997.PubMed/NCBI | |
Griffith AJ, Ji W, Prince ME, Altschuler RA and Meisler MH: Optic, olfactory, and vestibular dysmorphogenesis in the homozygous mouse insertional mutant Tg9257. J Craniofac Genet Dev Biol. 19:157–163. 1999.PubMed/NCBI | |
Kawamoto K, Oh SH, Kanzaki S, Brown N and Raphael Y: The functional and structural outcome of inner ear gene transfer via the vestibular and cochlear fluids in mice. Mol Ther. 4:575–585. 2001. View Article : Google Scholar : PubMed/NCBI |