1
|
Román GC: Vascular dementia:
distinguishing characteristics, treatment, and prevention. J Am
Geriatr Soc. 51:S296–S304. 2003.PubMed/NCBI
|
2
|
Ahlemeyer B and Krieglstein J:
Neuroprotective effects of Ginkgo biloba extract. Cell Mol
Life Sci. 60:1779–1792. 2003. View Article : Google Scholar
|
3
|
Chandrasekaran K, Mehrabian Z, Spinnewyn
B, Chinopoulos C, Drieu K and Fiskum G: Neuroprotective effects of
bilobalide, a component of Ginkgo biloba extract (EGb 761)
in global brain ischemia and in excitotoxicity-induced neuronal
death. Pharmacopsychiatry. 36(Suppl 1): S89–S94. 2003.PubMed/NCBI
|
4
|
Tanaka Y, Marumo T, Omura T and Yoshida S:
Serum S100B indicates successful combination treatment with
recombinant tissue plasminogen activator and MK-801 in a rat model
of embolic stroke. Brain Res. 1154:194–199. 2007. View Article : Google Scholar
|
5
|
Smith JV and Luo Y: Studies on molecular
mechanisms of Ginkgo biloba extract. Appl Microbiol
Biotechnol. 64:465–472. 2004. View Article : Google Scholar
|
6
|
Klein J, Chatterjee SS and Löffelholz K:
Phospholipid breakdown and choline release under hypoxic
conditions: inhibition by bilobalide, a constituent of Ginkgo
biloba. Brain Res. 755:347–350. 1997. View Article : Google Scholar : PubMed/NCBI
|
7
|
Weichel O, Hilgert M, Chatterjee SS, Lehr
M and Klein J: Bilobalide, a constituent of Ginkgo biloba,
inhibits NMDA-induced phospholipase A2 activation and phospholipid
breakdown in rat hippocampus. Naunyn Schmiedebergs Arch Pharmacol.
360:609–615. 1999.PubMed/NCBI
|
8
|
Rossi R, Basilico F, Rossoni G, Riva A,
Morazzoni P and Mauri PL: Liquid chromatography/atmospheric
pressure chemical ionization ion trap mass spectrometry of
bilobalide in plasma and brain of rats after oral administration of
its phospholipidic complex. J Pharm Biomed Anal. 50:224–227. 2009.
View Article : Google Scholar
|
9
|
Defeudis FV: Bilobalide and
neuroprotection. Pharmacol Res. 46:565–568. 2002. View Article : Google Scholar : PubMed/NCBI
|
10
|
Sarti C, Pantoni L, Bartolini L and
Inzitari D: Persistent impairment of gait performances and working
memory after bilateral common carotid artery occlusion in the adult
Wistar rat. Behav Brain Res. 136:13–20. 2002. View Article : Google Scholar : PubMed/NCBI
|
11
|
Ni J, Ohta H, Matsumoto K and Watanabe H:
Progressive cognitive impairment following chronic cerebral
hypoperfusion induced by permanent occlusion of bilateral carotid
arteries in rats. Brain Res. 653:231–236. 1994. View Article : Google Scholar
|
12
|
Janus C, Pearson J, McLaurin J, et al: A
beta peptide immunization reduces behavioural impairment and
plaques in a model of Alzheimer's disease. Nature. 408:979–982.
2000. View
Article : Google Scholar : PubMed/NCBI
|
13
|
Sarti C, Pantoni L, Bartolini L and
Inzitari D: Cognitive impairment and chronic cerebral
hypoperfusion: what can be learned from experimental models. J
Neurol Sci. 203–204:263–266. 2002.PubMed/NCBI
|
14
|
Bruno C, Cuppini R, Sartini S, Cecchini T,
Ambrogini P and Bombardelli E: Regeneration of motor nerves in
bilobalide-treated rats. Planta Med. 59:302–307. 1993. View Article : Google Scholar : PubMed/NCBI
|
15
|
D'Hooge R and De Deyn PP: Applications of
the Morris water maze in the study of learning and memory. Brain
Res Brain Res Rev. 36:60–90. 2001. View Article : Google Scholar : PubMed/NCBI
|
16
|
Bennett SA, Tenniswood M, Chen JH,
Davidson CM, Keyes MT, Fortin T and Pappas BA: Chronic cerebral
hypoperfusion elicits neuronal apoptosis and behavioral impairment.
Neuroreport. 9:161–166. 1998. View Article : Google Scholar : PubMed/NCBI
|
17
|
Pappas BA, de la Torre JC, Davidson CM,
Keyes MT and Fortin T: Chronic reduction of cerebral blood flow in
the adult rat: late-emerging CA1 cell loss and memory dysfunction.
Brain Res. 708:50–58. 1996. View Article : Google Scholar : PubMed/NCBI
|
18
|
Freund TF, Buzsáki G, Leon A, Baimbridge
KG and Somogyi P: Relationship of neuronal vulnerability and
calcium binding protein immunoreactivity in ischemia. Exp Brain
Res. 83:55–66. 1990. View Article : Google Scholar : PubMed/NCBI
|
19
|
Pereira LO, Nabinger PM, Strapasson AC,
Nardin P, Gonçalves CA, Siqueira IR and Netto CA: Long-term effects
of environmental stimulation following hypoxia-ischemia on the
oxidative state and BDNF levels in rat hippocampus and frontal
cortex. Brain Res. 1247:188–195. 2009. View Article : Google Scholar : PubMed/NCBI
|
20
|
Hunter AJ, Mackay KB and Rogers DC: To
what extent have functional studies of ischaemia in animals been
useful in the assessment of potential neuroprotective agents?
Trends Pharmacol Sci. 19:59–66. 1998. View Article : Google Scholar : PubMed/NCBI
|
21
|
Coyle JT and Puttfarcken P: Oxidative
stress, glutamate, and neurodegenerative disorders. Science.
262:689–695. 1993. View Article : Google Scholar : PubMed/NCBI
|
22
|
Markesbery WR: Oxidative stress hypothesis
in Alzheimer's disease. Free Radic Biol Med. 23:134–147. 1997.
View Article : Google Scholar
|
23
|
Chong ZZ, Li F and Maiese K: Oxidative
stress in the brain: novel cellular targets that govern survival
during neurodegenerative disease. Prog Neurobiol. 75:207–246. 2005.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Lazzarino G, Tavazzi B, Di Pierro D,
Vagnozzi R, Penco M and Giardina B: The relevance of
malondialdehyde as a biochemical index of lipid peroxidation of
postischemic tissues in the rat and human beings. Biol Trace Elem
Res. 47:165–170. 1995. View Article : Google Scholar : PubMed/NCBI
|
25
|
Halliwell B: Reactive oxygen species in
living systems: source, biochemistry, and role in human disease. Am
J Med. 91:S14–S22. 1991.PubMed/NCBI
|
26
|
Bannister JV, Bannister WH and Rotilio G:
Aspects of the structure, function, and applications of superoxide
dismutase. CRC Crit Rev Biochem. 22:111–180. 1987. View Article : Google Scholar : PubMed/NCBI
|
27
|
Escobar JA, Rubio MA and Lissi EA: Sod and
catalase inactivation by singlet oxygen and peroxyl radicals. Free
Radic Biol Med. 20:285–290. 1996. View Article : Google Scholar : PubMed/NCBI
|
28
|
Montague PR, Gancayco CD, Winn MJ,
Marchase RB and Friedlander MJ: Role of NO production in NMDA
receptor-mediated neurotransmitter release in cerebral cortex.
Science. 263:973–977. 1994. View Article : Google Scholar : PubMed/NCBI
|
29
|
Iadecola C: Bright and dark sides of
nitric oxide in ischemic brain injury. Trends Neurosci. 20:132–139.
1997. View Article : Google Scholar : PubMed/NCBI
|
30
|
Tabet N, Mantle D, Walker Z and Orrell M:
Vitamins, trace elements, and antioxidant status in dementia
disorders. Int Psychogeriatr. 13:265–275. 2001. View Article : Google Scholar : PubMed/NCBI
|
31
|
DeFeudis FV and Drieu K: Ginkgo
biloba extract (EGb 761) and CNS functions: basic studies and
clinical applications. Curr Drug Targets. 1:25–58. 2000. View Article : Google Scholar
|
32
|
Xiong Z, Liu C, Wang F, Li C, Wang W, Wang
J and Chen J: Protective effects of breviscapine on ischemic
vascular dementia in rats. Biol Pharm Bull. 29:1880–1885. 2006.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Farkas E, Luiten PG and Bari F: Permanent,
bilateral common carotid artery occlusion in the rat: a model for
chronic cerebral hypoperfusion-related neurodegenerative diseases.
Brain Res Rev. 54:162–180. 2007. View Article : Google Scholar
|
34
|
Tarkowski E, Blennow K, Wallin A and
Tarkowski A: Intracerebral production of tumor necrosis
factor-alpha, a local neuroprotective agent, in Alzheimer disease
and vascular dementia. J Clin Immunol. 19:223–230. 1999. View Article : Google Scholar
|
35
|
Zuliani G, Ranzini M, Guerra G, Rossi L,
Munari MR, Zurlo A, Volpato S, Atti AR, Blè A and Fellin R: Plasma
cytokines profile in older subjects with late onset Alzheimer's
disease or vascular dementia. J Psychiatr Res. 41:686–693. 2007.
View Article : Google Scholar : PubMed/NCBI
|