1
|
Bishara SE and Ziaja RR: Functional
appliances: a review. Am J Orthod Dentofacial Orthop. 95:250–258.
1989. View Article : Google Scholar : PubMed/NCBI
|
2
|
El-Bialy T, El-Shamy I and Graber TM:
Growth modification of the rabbit mandible using therapeutic
ultrasound: is it possible to enhance functional appliance results?
Angle Orthod. 73:631–639. 2003.
|
3
|
Ma B, Sampson W, Wilson D, Wiebkin O and
Fazzalari N: A histomorphometric study of adaptive responses of
cancellous bone in different regions in the sheep mandibular
condyle following experimental forward mandibular displacement.
Arch Oral Biol. 47:519–527. 2002. View Article : Google Scholar
|
4
|
Shen G and Darendeliler MA: The adaptive
remodeling of condylar cartilage - a transition from chondrogenesis
to osteogenesis. J Dent Res. 84:691–699. 2005. View Article : Google Scholar : PubMed/NCBI
|
5
|
Sundaramurthy S and Mao JJ: Modulation of
endochondral development of the distal femoral condyle by
mechanical loading. J Orthop Res. 24:229–241. 2006. View Article : Google Scholar : PubMed/NCBI
|
6
|
Ribatti D, Vacca A and Presta M: The
discovery of angiogenic factors: a historical review. Gen
Pharmacol. 35:227–231. 2000. View Article : Google Scholar : PubMed/NCBI
|
7
|
Cascone I, Audero E, Giraudo E, Napione L,
Maniero F, Philips MR, Collard JG, Serini G and Bussolino F:
Tie-2-dependent activation of RhoA and Rac1 participates in
endothelial cell motility triggered by angiopoietin-1. Blood.
102:2482–2490. 2003. View Article : Google Scholar : PubMed/NCBI
|
8
|
Cho CH, Sung HK, Kim KT, Cheon HG, Oh GT,
Hong HJ, Yoo OJ and Koh GY: COMP-angiopoietin-1 promotes wound
healing through enhanced angiogenesis, lymphangiogenesis, and blood
flow in a diabetic mouse model. Proc Natl Acad Sci USA.
103:4946–4951. 2006. View Article : Google Scholar : PubMed/NCBI
|
9
|
Escobar E, Rodríguez-Reyna TS, Arrieta O
and Sotelo J: Angiotensin II, cell proliferation and angiogenesis
regulator: biologic and therapeutic implications in cancer. Curr
Vasc Pharmacol. 2:385–399. 2004. View Article : Google Scholar : PubMed/NCBI
|
10
|
Horner A, Bord S, Kelsall AW, Coleman N
and Compston JE: Tie2 ligands angiopoietin-1 and angiopoietin-2 are
coexpressed with vascular endothelial cell growth factor in growing
human bone. Bone. 28:65–71. 2001. View Article : Google Scholar : PubMed/NCBI
|
11
|
Suzuki T, Miyamoto T, Fujita N, Ninomiya
K, Iwasaki R, Toyama Y and Suda T: Osteoblast-specific Angiopoietin
1 overexpression increases bone mass. Biochem Biophys Res Commun.
362:1019–1025. 2007. View Article : Google Scholar : PubMed/NCBI
|
12
|
Li QF and Rabie AB: A new approach to
control condylar growth by regulating angiogenesis. Arch Oral Biol.
52:1009–1017. 2007. View Article : Google Scholar : PubMed/NCBI
|
13
|
Wu MJ, Zhan J and Gu ZY: Time course of
expression of bcl-2 and bax in rabbit condylar chondrocytes
following forward mandibular positioning. Angle Orthod. 78:453–459.
2008. View Article : Google Scholar : PubMed/NCBI
|
14
|
Fiedler U and Augustin HG: Angiopoietins:
a link between angiogenesis and inflammation. Trends Immunol.
27:552–558. 2006. View Article : Google Scholar : PubMed/NCBI
|
15
|
Scott BB, Zaratin PF, Gilmartin AG,
Hansbury MJ, Colombo A, Belpasso C, Winkler JD and Jackson JR:
TNF-alpha modulates angiopoietin-1 expression in rheumatoid
synovial fibroblasts via the NF-kappa B signalling pathway. Biochem
Biophys Res Commun. 328:409–414. 2005. View Article : Google Scholar : PubMed/NCBI
|
16
|
Park YS, Kim NH and Jo I: Hypoxia and
vascular endothelial growth factor acutely up-regulate
angiopoietin-1 and Tie2 mRNA in bovine retinal pericytes. Microvasc
Res. 65:125–131. 2003. View Article : Google Scholar : PubMed/NCBI
|
17
|
Zacharek A, Chen J, Zhang C, Cui X,
Roberts C, Jiang H, Teng H and Chopp M: Nitric oxide regulates
Angiopoietin1/Tie2 expression after stroke. Neurosci Lett.
404:28–32. 2006. View Article : Google Scholar : PubMed/NCBI
|
18
|
Oike Y, Yasunaga K and Suda T:
Angiopoietin-related/angiopoietin-like proteins regulate
angiogenesis. Int J Hematol. 80:21–28. 2004. View Article : Google Scholar : PubMed/NCBI
|
19
|
Aoyama J, Tanaka E, Miyauchi M, Takata T,
Hanaoka K, Hattori Y, Sasaki A, Watanabe M and Tanne K:
Immunolocalization of vascular endothelial growth factor in rat
condylar cartilage during postnatal development. Histochem Cell
Biol. 122:35–40. 2004.PubMed/NCBI
|
20
|
Zhan J and Gu ZY: Expression of bone
histomorphometry parameters in rabbit condyle during mandibular
forward positioning. Zhonghua Kou Qiang Yi Xue Za Zhi. 48:303–307.
2013.PubMed/NCBI
|
21
|
De Spiegelaere W, Cornillie P, Casteleyn
C, Burvenich C and Van den Broeck W: Detection of hypoxia inducible
factors and angiogenic growth factors during foetal endochondral
and intramembranous ossification. Anat Histol Embryol. 39:376–384.
2010.PubMed/NCBI
|
22
|
Yee G, Yu Y, Walsh WR, Lindeman R and
Poole MD: The immunolocalisation of VEGF in the articular cartilage
of sheep mandibular condyles. J Craniomaxillofac Surg. 31:244–251.
2003. View Article : Google Scholar : PubMed/NCBI
|
23
|
Lobov IB, Brooks PC and Lang RA:
Angiopoietin-2 displays VEGF-dependent modulation of capillary
structure and endothelial cell survival in vivo. Proc Natl Acad Sci
USA. 99:11205–11210. 2002. View Article : Google Scholar : PubMed/NCBI
|
24
|
Rabie AB, Leung FY, Chayanupatkul A and
Hägg U: The correlation between neovascularization and bone
formation in the condyle during forward mandibular positioning.
Angle Orthod. 72:431–438. 2002.
|
25
|
Gu Z, Feng J, Shibata T, Hu J and Zhang Z:
Type II collagen and aggrecan mRNA expression by in situ
hybridization in rabbit temporomandibular joint posterior
attachment following disc displacement. Arch Oral Biol. 48:55–62.
2003. View Article : Google Scholar : PubMed/NCBI
|
26
|
Muto T, Kawakami J, Kanazawa M, Ishii H,
Uga S, Yokoyama K and Takeuchi M: Relationship between disc
displacement and morphologic features of skeletal Class III
malocclusion. Int J Adult Orthodon Orthognath Surg. 13:145–151.
1998.PubMed/NCBI
|
27
|
Ishimaru J, Handa Y, Kurita K and Goss AN:
The effect of occlusal loss on normal and pathological
temporomandibular joints: an animal study. J Craniomaxillofac Surg.
22:95–102. 1994. View Article : Google Scholar : PubMed/NCBI
|
28
|
Huang Q, Opstelten D, Samman N and Tideman
H: Experimentally induced unilateral tooth loss: histochemical
studies of the temporomandibular joint. J Dent Res. 81:209–213.
2002. View Article : Google Scholar : PubMed/NCBI
|
29
|
Hajjar D, Santos MF and Kimura ET:
Propulsive appliance stimulates the synthesis of insulin-like
growth factors I and II in the mandibular condylar cartilage of
young rats. Arch Oral Biol. 48:635–642. 2003. View Article : Google Scholar
|