1
|
Silman AJ and Pearson JE: Epidemiology and
genetics of rheumatoid arthritis. Arthritis Res. 4(Suppl 3):
S265–S272. 2002. View
Article : Google Scholar : PubMed/NCBI
|
2
|
Firestein GS: Evolving concepts of
rheumatoid arthritis. Nature. 423:356–361. 2003. View Article : Google Scholar : PubMed/NCBI
|
3
|
Klareskog L, Padyukov L, Rönnelid J and
Alfredsson L: Genes, environment and immunity in the development of
rheumatoid arthritis. Curr Opin Immunol. 18:650–655. 2006.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Hall FC, Weeks DE, Camilleri JP, et al:
Influence of the HLA-DRB1 locus on susceptibility and severity in
rheumatoid arthritis. QJM. 89:821–829. 1996. View Article : Google Scholar : PubMed/NCBI
|
5
|
Kong KF, Yeap SS, Chow SK and Phipps ME:
HLA-DRB1 genes and susceptibility to rheumatoid arthritis in three
ethnic groups from Malaysia. Autoimmunity. 35:235–239. 2002.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Mattey DL, Dawes PT, Clarke S, et al:
Relationship among the HLA-DRB1 shared epitope, smoking, and
rheumatoid factor production in rheumatoid arthritis. Arthritis
Rheum. 47:403–407. 2002. View Article : Google Scholar : PubMed/NCBI
|
7
|
Begovich AB, Carlton VE, Honigberg LA, et
al: A missense single-nucleotide polymorphism in a gene encoding a
protein tyrosine phosphatase (PTPN22) is associated with rheumatoid
arthritis. Am J Hum Genet. 75:330–337. 2004. View Article : Google Scholar : PubMed/NCBI
|
8
|
Karlson EW, Chibnik LB, Cui J, et al:
Associations between human leukocyte antigen, PTPN22, CTLA4
genotypes and rheumatoid arthritis phenotypes of autoantibody
status, age at diagnosis and erosions in a large cohort study. Ann
Rheum Dis. 67:358–363. 2008. View Article : Google Scholar
|
9
|
Ikari K, Momohara S, Inoue E, et al:
Haplotype analysis revealed no association between the PTPN22 gene
and RA in a Japanese population. Rheumatology (Oxford).
45:1345–1348. 2006. View Article : Google Scholar : PubMed/NCBI
|
10
|
Kawasaki E, Awata T, Ikegami H, et al:
Systematic search for single nucleotide polymorphisms in a lymphoid
tyrosine phosphatase gene (PTPN22): association between a promoter
polymorphism and type 1 diabetes in Asian populations. Am J Med
Genet A. 140:586–593. 2006. View Article : Google Scholar
|
11
|
Suzuki A, Yamada R, Chang X, et al:
Functional haplotypes of PADI4, encoding citrullinating enzyme
peptidylarginine deiminase 4, are associated with rheumatoid
arthritis. Nat Genet. 34:395–402. 2003. View Article : Google Scholar : PubMed/NCBI
|
12
|
Tokuhiro S, Yamada R, Chang X, et al: An
intronic SNP in a RUNX1 binding site of SLC22A4, encoding an
organic cation transporter, is associated with rheumatoid
arthritis. Nat Genet. 35:341–348. 2003. View Article : Google Scholar : PubMed/NCBI
|
13
|
Kochi Y, Yamada R, Suzuki A, et al: A
functional variant in FCRL3, encoding Fc receptor-like 3, is
associated with rheumatoid arthritis and several autoimmunities.
Nat Genet. 37:478–485. 2005. View
Article : Google Scholar : PubMed/NCBI
|
14
|
Plenge RM, Padyukov L, Remmers EF, et al:
Replication of putative candidate-gene associations with rheumatoid
arthritis in >4,000 samples from North America and Sweden:
association of susceptibility with PTPN22, CTLA4, and PADI4. Am J
Hum Genet. 77:1044–1060. 2005. View
Article : Google Scholar
|
15
|
Barton A, Bowes J, Eyre S, et al: A
functional haplotype of the PADI4 gene associated with rheumatoid
arthritis in a Japanese population is not associated in a United
Kingdom population. Arthritis Rheum. 50:1117–1121. 2004. View Article : Google Scholar : PubMed/NCBI
|
16
|
Carlsson P and Mahlapuu M: Forkhead
transcription factors: key players in development and metabolism.
Dev Biol. 250:1–23. 2002. View Article : Google Scholar : PubMed/NCBI
|
17
|
Landgren H and Carlsson P: FoxJ3, a novel
mammalian forkhead gene expressed in neuroectoderm, neural crest,
and myotome. Dev Dyn. 231:396–401. 2004. View Article : Google Scholar : PubMed/NCBI
|
18
|
Kaestner KH, Knochel W and Martinez DE:
Unified nomenclature for the winged helix/forkhead transcription
factors. Genes Dev. 14:142–146. 2000.PubMed/NCBI
|
19
|
Dejaco C, Duftner C, Grubeck-Loebenstein B
and Schirmer M: Imbalance of regulatory T cells in human autoimmune
diseases. Immunology. 117:289–300. 2006. View Article : Google Scholar : PubMed/NCBI
|
20
|
Li CS, Chae SC, Lee JH, et al:
Identification of single nucleotide polymorphisms in FOXJ1 and
their association with allergic rhinitis. J Hum Genet. 51:292–297.
2006. View Article : Google Scholar : PubMed/NCBI
|
21
|
Li CS, Zhang Q, Lim MK, et al: Association
of FOXJ1 polymorphisms with systemic lupus erythematosus and
rheumatoid arthritis in Korean population. Exp Mol Med. 39:805–811.
2007. View Article : Google Scholar : PubMed/NCBI
|
22
|
Arnett FC, Edworthy SM, Bloch DA, et al:
The American Rheumatism Association 1987 revised criteria for the
classification of rheumatoid arthritis. Arthritis Rheum.
31:315–324. 1988. View Article : Google Scholar : PubMed/NCBI
|
23
|
Lewis CM: Genetic association studies:
design, analysis and interpretation. Brief Bioinform. 3:146–153.
2002. View Article : Google Scholar : PubMed/NCBI
|
24
|
Nik Tavakoli N, Hambly BD, Sullivan DR and
Bao S: Forkhead box protein 3: essential immune regulatory role.
Int J Biochem Cell Biol. 40:2369–2373. 2008.PubMed/NCBI
|
25
|
Coffer PJ and Burgering BM: Forkhead-box
transcription factors and their role in the immune system. Nat Rev
Immunol. 4:889–899. 2004. View
Article : Google Scholar : PubMed/NCBI
|
26
|
Ast G: How did alternative splicing
evolve? Nat Rev Genet. 5:773–782. 2004. View Article : Google Scholar : PubMed/NCBI
|