1
|
Parsons JT, Bova FJ, Fitzgerald CR,
Mendenhall WM and Million RR: Severe dry-eye syndrome following
external beam irradiation. Int J Radiat Oncol Biol Phys.
30:775–780. 1994. View Article : Google Scholar : PubMed/NCBI
|
2
|
Parsons JT, Bova FJ, Mendenhall WM,
Million RR and Fitzgerald CR: Response of the normal eye to high
dose radiotherapy. Oncology (Williston Park). 10:837–848. 851–852.
1996.PubMed/NCBI
|
3
|
Hempel M and Hinkelbein W: Eye sequelae
following external irradiation. Recent Results Cancer Res.
130:231–236. 1993. View Article : Google Scholar : PubMed/NCBI
|
4
|
Gazda MJ, Schultheiss TE, Stephens LC, Ang
KK and Peters LJ: The relationship between apoptosis and atrophy in
the irradiated lacrimal gland. Int J Radiat Oncol Biol Phys.
24:693–697. 1992. View Article : Google Scholar : PubMed/NCBI
|
5
|
Solans R, Bosch JA, Galofré P, et al:
Salivary and lacrimal gland dysfunction (sicca syndrome) after
radioiodine therapy. J Nucl Med. 42:738–743. 2001.PubMed/NCBI
|
6
|
Fard-Esfahani A, Mirshekarpour H, Fallahi
B, et al: The effect of high-dose radioiodine treatment on lacrimal
gland function in patients with differentiated thyroid carcinoma.
Clin Nucl Med. 32:696–699. 2007. View Article : Google Scholar : PubMed/NCBI
|
7
|
Zettinig G, Hanselmayer G, Fueger BJ, et
al: Long-term impairment of the lacrimal glands after radioiodine
therapy: a cross-sectional study. Eur J Nucl Med Mol Imaging.
29:1428–1432. 2002. View Article : Google Scholar : PubMed/NCBI
|
8
|
Ruskell GL: Nerve terminals and epithelial
cell variety in the human lacrimal gland. Cell Tissue Res.
158:121–136. 1975. View Article : Google Scholar : PubMed/NCBI
|
9
|
Vigneswaran N, Wilk CM, Heese A, Hornstein
OP and Naumann GO: Immunohistochemical characterization of
epithelial cells in human lacrimal glands. I. Normal major and
accessory lacrimal glands. Graefes Arch Clin Exp Ophthalmol.
228:58–64. 1990. View Article : Google Scholar : PubMed/NCBI
|
10
|
Wilk CM, Vigneswaran N, Heese A, Hornstein
OP and Naumann GO: Immunohistochemical characterization of
epithelial cells in human lacrimal glands. II. Inflammatory and
neoplastic lesions of lacrimal glands Graefes. Arch Clin Exp
Ophthalmol. 228:65–72. 1990. View Article : Google Scholar : PubMed/NCBI
|
11
|
Zoukhri D, Fix A, Alroy J and Kublin CL:
Mechanisms of murine lacrimal gland repair after experimentally
induced inflammation. Invest Ophthalmol Vis Sci. 49:4399–4406.
2008. View Article : Google Scholar : PubMed/NCBI
|
12
|
You S, Avidan O, Tariq A, et al: Role of
epithelial-mesenchymal transition in repair of the lacrimal gland
after experimentally induced injury. Invest Ophthalmol Vis Sci.
53:126–135. 2012. View Article : Google Scholar : PubMed/NCBI
|
13
|
Sesto A, Navarro M, Burslem F and Jorcano
JL: Analysis of the ultraviolet B response in primary human
keratinocytes using oligonucleotide microarrays. Proc Natl Acad Sci
USA. 99:2965–2970. 2002. View Article : Google Scholar : PubMed/NCBI
|
14
|
Marionnet C, Bernerd F, Dumas A, et al:
Modulation of gene expression induced in human epidermis by
environmental stress in vivo. J Invest Dermatol. 121:1447–1458.
2003. View Article : Google Scholar : PubMed/NCBI
|
15
|
Howell BG, Wang B, Freed I, Mamelak AJ,
Watanabe H and Sauder DN: Microarray analysis of UVB-regulated
genes in keratinocytes: downregulation of angiogenesis inhibitor
thrombospondin-1. J Dermatol Sci. 34:185–194. 2004. View Article : Google Scholar : PubMed/NCBI
|
16
|
Thyss R, Virolle V, Imbert V, Peyron JF,
Aberdam D and Virolle T: NF-kappaB/Egr-1/Gadd45 are sequentially
activated upon UVB irradiation to mediate epidermal cell death.
EMBO J. 24:128–137. 2005. View Article : Google Scholar : PubMed/NCBI
|
17
|
Hildesheim J, Bulavin DV, Anver MR, et al:
Gadd45a protects against UV irradiation-induced skin tumors, and
promotes apoptosis and stress signaling via MAPK and p53. Cancer
Res. 62:7305–7315. 2002.PubMed/NCBI
|
18
|
Meyer NJ, Huang Y, Singleton PA, et al:
GADD45a is a novel candidate gene in inflammatory lung injury via
influences on Akt signaling. FASEB J. 23:1325–1337. 2009.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Fayolle C, Pourchet J, Caron de Fromentel
C, Puisieux A, Doré JF and Voeltzel T: Gadd45a activation protects
melanoma cells from ultraviolet B-induced apoptosis. J Invest
Dermatol. 128:196–202. 2008. View Article : Google Scholar : PubMed/NCBI
|
20
|
Shan Z, Li G, Zhan Q and Li D: Gadd45a
inhibits cell migration and invasion by altering the global RNA
expression. Cancer Biol Ther. 13:1112–1122. 2012. View Article : Google Scholar : PubMed/NCBI
|
21
|
Ji J, Liu R, Tong T, et al: Gadd45a
regulates beta-catenin distribution and maintains cell-cell
adhesion/contact. Oncogene. 26:6396–6405. 2007. View Article : Google Scholar : PubMed/NCBI
|
22
|
Kobayashi S, Kawakita T, Kawashima M, et
al: Characterization of cultivated murine lacrimal gland epithelial
cells. Mol Vis. 18:1271–1277. 2012.PubMed/NCBI
|
23
|
Asuthkar S, Nalla AK, Gondi CS, et al:
Gadd45a sensitizes medulloblastoma cells to irradiation and
suppresses MMP-9-mediated EMT. Neuro Oncol. 13:1059–1073. 2011.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Liebermann DA and Hoffman B: Gadd45 in
stress signaling. J Mol Signal. 3:152008. View Article : Google Scholar : PubMed/NCBI
|
25
|
Lee KM, Lee JG, Seo EY, et al: Analysis of
genes responding to ultraviolet B irradiation of HaCaT
keratinocytes using a cDNA microarray. Br J Dermatol. 152:52–59.
2005. View Article : Google Scholar : PubMed/NCBI
|
26
|
Takao J, Ariizumi K, Dougherty II and Cruz
PD Jr: Genomic scale analysis of the human keratinocyte response to
broad-band ultraviolet-B irradiation. Photodermatol Photoimmunol
Photomed. 18:5–13. 2002. View Article : Google Scholar : PubMed/NCBI
|
27
|
Li D, Turi TG, Schuck A, Freedberg IM,
Khitrov G and Blumenberg M: Rays and arrays: the transcriptional
program in the response of human epidermal keratinocytes to UVB
illumination. FASEB J. 15:2533–2535. 2001.PubMed/NCBI
|
28
|
Yang F, Zhang W, Li D and Zhan Q: Gadd45a
suppresses tumor angiogenesis via inhibition of the mTOR/STAT3
protein pathway. J Biol Chem. 288:6552–6560. 2013. View Article : Google Scholar : PubMed/NCBI
|
29
|
Nakamura S, Kinoshita S, Yokoi N, et al:
Lacrimal hypofunction as a new mechanism of dry eye in visual
display terminal users. PloS One. 5:e111192010. View Article : Google Scholar : PubMed/NCBI
|
30
|
Uchino M, Schaumberg DA, Dogru M, et al:
Prevalence of dry eye disease among Japanese visual display
terminal users. Ophthalmology. 115:1982–1988. 2008. View Article : Google Scholar : PubMed/NCBI
|