1
|
Hench LL: Biomaterials: a forecast for the
future. Biomaterials. 19:1419–1423. 1998. View Article : Google Scholar : PubMed/NCBI
|
2
|
Davo R, Malevez C and Rojas J: Immediate
function in the atrophic maxilla using zygoma implants: a
preliminary study. J Prosthet Dent. 97(Suppl 6): S44–S51. 2007.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Petrovic V and Stefanovic V: Dental tissue
- new source for stem cells. Scientific World Journal. 9:1167–1177.
2009.PubMed/NCBI
|
4
|
Gronthos S, Brahim J, Li W, et al: Stem
cell properties of human dental pulp stem cells. J Dent Res.
81:531–535. 2002. View Article : Google Scholar : PubMed/NCBI
|
5
|
Seo BM, Miura M, Gronthos S, et al:
Investigation of multipotent postnatal stem cells from human
periodontal ligament. Lancet. 364:149–155. 2004. View Article : Google Scholar : PubMed/NCBI
|
6
|
Radtke S and Horn PA: Cells, niche, fate:
meeting report on the 6th International Meeting of the Stem Cell
Network North Rhine Westphalia. Cell Reprogram. 13:381–384.
2011.PubMed/NCBI
|
7
|
Forte A, Galderisi U, Cipollaro M and
Cascino A: Mesenchymal stem cells: a good candidate for restenosis
therapy? Curr Vasc Pharmacol. 7:381–393. 2009. View Article : Google Scholar : PubMed/NCBI
|
8
|
Deryugina EI and Müller-Sieburg CE:
Stromal cells in long-term cultures: keys to the elucidation of
hematopoietic development? Crit Rev Immunol. 13:115–150.
1993.PubMed/NCBI
|
9
|
Fini M, Giavaresi G, Torricelli P, et al:
Osteoporosis and biomaterial osteointegration. Biomed Pharmacother.
58:487–493. 2004. View Article : Google Scholar
|
10
|
Davies JE: Mechanisms of endosseous
integration. Int J Prosthodont. 11:391–401. 1998.PubMed/NCBI
|
11
|
Meyer U, Joos U, Mythili J, et al:
Ultrastructural characterization of the implant/bone interface of
immediately loaded dental implants. Biomaterials. 25:1959–1967.
2004. View Article : Google Scholar : PubMed/NCBI
|
12
|
Shields LB, Raque GH, Glassman SD, et al:
Adverse effects associated with high-dose recombinant human bone
morphogenetic protein-2 use in anterior cervical spine fusion.
Spine (Phila Pa 1976). 31:542–547. 2006. View Article : Google Scholar
|
13
|
Alanay A, Chen C, Lee S, et al: The
adjunctive effect of a binding peptide on bone morphogenetic
protein enhanced bone healing in a rodent model of spinal fusion.
Spine (Phila Pa 1976). 33:1709–1713. 2008. View Article : Google Scholar : PubMed/NCBI
|
14
|
Glassman SD, Carreon LY, Campbell MJ, et
al: The perioperative cost of Infuse bone graft in posterolateral
lumbar spine fusion. Spine J. 8:443–448. 2008. View Article : Google Scholar : PubMed/NCBI
|
15
|
Assoian RK, Grotendorst GR, Miller DM and
Sporn MB: Cellular transformation by coordinated action of three
peptide growth factors from human platelets. Nature. 309:804–806.
1984. View
Article : Google Scholar : PubMed/NCBI
|
16
|
Vogel JP, Szalay K, Geiger F, Kramer M,
Richter W and Kasten P: Platelet-rich plasma improves expansion of
human mesenchymal stem cells and retains differentiation capacity
and in vivo bone formation in calcium phosphate ceramics.
Platelets. 17:462–469. 2006. View Article : Google Scholar
|
17
|
Choukroun J, Adda F, Schoeffler C and
Vervelle A: Une opportunité en paro-implantologie: le PRF.
Implantodontie. 42:55–62. 2001.
|
18
|
Corigliano M, Sacco L and Baldoni E: CGF-
una proposta terapeutica per la medicina rigenerativa. Odontoiatria
- no 1 anno XXIX - Maggio. 1:69–81. 2010.
|
19
|
Sohn DS, Heo JU, Kwak DH, et al: Bone
regeneration in the maxillary sinus using an autologous fibrin-rich
block with concentrated growth factors alone. Implant Dent.
20:389–395. 2011.PubMed/NCBI
|
20
|
He H, Yu J, Cao J, et al: Biocompatibility
and osteogenic capacity of periodontal ligament stem cells on
nHAC/PLA and HA/TCP scaffolds. J Biomater Sci Polym Ed. Jun
16–2010.(Epub ahead of print).
|
21
|
Mrozik K, Gronthos S, Shi S and Bartold
PM: A method to isolate, purify, and characterize human periodontal
ligament stem cells. Methods Mol Biol. 666:269–284. 2010.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Coura GS, Garcez RC, de Aguiar CB,
Alvarez-Silva M, Magini RS and Trentin AG: Human periodontal
ligament: a niche of neural crest stem cells. J Periodontal Res.
43:531–536. 2008. View Article : Google Scholar : PubMed/NCBI
|
23
|
Lee UL, Jeon SH, Park JY and Choung PH:
Effect of platelet-rich plasma on dental stem cells derived from
human impacted third molars. Regen Med. 6:67–79. 2011. View Article : Google Scholar : PubMed/NCBI
|
24
|
Rodella LF, Favero G, Boninsegna R, et al:
Growth factors, CD34 positive cells, and fibrin network analysis in
concentrated growth factors fraction. Microsc Res Tech. 74:772–777.
2011. View Article : Google Scholar : PubMed/NCBI
|
25
|
Zhao L, Jiang S and Hantash BM:
Transforming growth factor beta1 induces osteogenic differentiation
of murine bone marrow stromal cells. Tissue Eng Part A. 16:725–733.
2010. View Article : Google Scholar : PubMed/NCBI
|
26
|
Zeiter S, Lezuo P and Ito K: Effect of TGF
beta1, BMP-2 and hydraulic pressure on chondrogenic differentiation
of bovine bone marrow mesenchymal stromal cells. Biorheology.
46:45–55. 2009.PubMed/NCBI
|
27
|
Wirz S, Dietrich M, Flanagan TC, et al:
Influence of platelet-derived growth factor-AB on tissue
development in autologous platelet-rich plasma gels. Tissue Eng
Part A. 17:1891–1899. 2011. View Article : Google Scholar : PubMed/NCBI
|
28
|
Nakano N, Nakai Y, Seo TB, et al:
Characterization of conditioned medium of cultured bone marrow
stromal cells. Neurosci Lett. 483:57–61. 2010. View Article : Google Scholar : PubMed/NCBI
|
29
|
Fang Y, Wang LP, Du FL, Liu WJ and Ren GL:
Effects of insulin-like growth factor I on alveolar bone remodeling
in diabetic rats. J Periodontal Res. 48:144–150. 2013. View Article : Google Scholar : PubMed/NCBI
|
30
|
Sunitha Raja V and Munirathnam Naidu E:
Platelet-rich fibrin: evolution of a second-generation platelet
concentrate. Indian J Dent Res. 19:42–46. 2008.PubMed/NCBI
|
31
|
Dohan DM, Choukroun J, Diss A, et al:
Platelet-rich fibrin (PRF): a second-generation platelet
concentrate. Part II: platelet-related biologic features. Oral Surg
Oral Med Oral Pathol Oral Radiol Endod. 101:e45–e50. 2006.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Kang YH, Jeon SH, Park JY, et al:
Platelet-rich fibrin is a Bioscaffold and reservoir of growth
factors for tissue regeneration. Tissue Eng Part A. 17:349–359.
2011. View Article : Google Scholar : PubMed/NCBI
|
33
|
Dohan Ehrenfest DM, de Peppo GM, Doglioli
P and Sammartino G: Slow release of growth factors and
thrombospondin-1 in Choukroun’s platelet-rich fibrin (PRF): a gold
standard to achieve for all surgical platelet concentrates
technologies. Growth Factors. 27:63–69. 2009.PubMed/NCBI
|
34
|
Dohan Ehrenfest DM, Rasmusson L and
Albrektsson T: Classification of platelet concentrates: from pure
platelet-rich plasma (P-PRP) to leucocyte- and platelet-rich fibrin
(L-PRF). Trends Biotechnol. 27:158–167. 2009.PubMed/NCBI
|
35
|
Graziani F, Ivanovski S, Cei S, Ducci F,
Tonetti M and Gabriele M: The in vitro effect of different PRP
concentrations on osteoblasts and fibroblasts. Clin Oral Implants
Res. 17:212–219. 2006. View Article : Google Scholar : PubMed/NCBI
|
36
|
Dohan Ehrenfest DM, Doglioli P, de Peppo
GM, Del Corso M and Charrier JB: Choukroun’s platelet-rich fibrin
(PRF) stimulates in vitro proliferation and differentiation of
human oral bone mesenchymal stem cell in a dose-dependent way. Arch
Oral Biol. 55:185–194. 2010.
|
37
|
Yoshikawa T, Nakajima H, Takakura Y and
Nonomura A: Osteogenesis with cryopreserved marrow mesenchymal
cells. Tissue Eng. 11:152–160. 2005. View Article : Google Scholar : PubMed/NCBI
|
38
|
Liu G, Shu C, Cui L, Liu W and Cao Y:
Tissue-engineered bone formation with cryopreserved human bone
marrow mesenchymal stem cells. Cryobiology. 56:209–215. 2008.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Huang FM, Yang SF, Zhao JH and Chang YC:
Platelet-rich fibrin increases proliferation and differentiation of
human dental pulp cells. J Endod. 36:1628–1632. 2010. View Article : Google Scholar : PubMed/NCBI
|