1
|
Thomma BP, Cammue BP and Thevissen K:
Plant defensins. Planta. 216:193–202. 2002. View Article : Google Scholar : PubMed/NCBI
|
2
|
Lay FT and Anderson MA: Defensins -
components of the innate immune system in plants. Curr Protein Pept
Sci. 6:85–101. 2005. View Article : Google Scholar : PubMed/NCBI
|
3
|
Rodríguez de la Vega RC and Possani LD: On
the evolution of invertebrate defensins. Trends Genet. 21:330–332.
2005.
|
4
|
Lehrer RI and Ganz T: Defensins of
vertebrate animals. Curr Opin Immunol. 14:96–102. 2002. View Article : Google Scholar : PubMed/NCBI
|
5
|
Hoffmann JA and Hetru C: Insect defensins:
inducible antibacterial peptides. Immunol Today. 13:411–415. 1992.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Tang YQ, Yuan J, Osapay G, et al: A cyclic
antimicrobial peptide produced in primate leukocytes by the
ligation of two truncated alpha-defensins. Science. 286:498–502.
1999. View Article : Google Scholar : PubMed/NCBI
|
7
|
Yamaguchi Y, Nagase T, Makita R, et al:
Identification of multiple novel epididymis-specific beta-defensin
isoforms in humans and mice. J Immunol. 169:2516–2523. 2002.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Kao CY, Chen Y, Zhao YH and Wu R:
ORFeome-based search of airway epithelial cell-specific novel human
β-defensin genes. Am J Respir Cell Mol Biol. 29:71–80.
2003.PubMed/NCBI
|
9
|
Semple CA, Rolfe M and Dorin JR:
Duplication and selection in the evolution of primate beta-defensin
genes. Genome Biol. 4:R312003. View Article : Google Scholar : PubMed/NCBI
|
10
|
Dubé E, Hermo L, Chan PT and Cyr DG:
Alterations in gene expression in the caput epididymides of
nonobstructive azoospermic men. Biol Reprod. 78:342–351.
2008.PubMed/NCBI
|
11
|
Huang L, Ching CB, Jiang R and Leong SS:
Production of bioactive human beta-defensin 5 and 6 in
Escherichia coli by soluble fusion expression. Protein Expr
Purif. 61:168–174. 2008. View Article : Google Scholar : PubMed/NCBI
|
12
|
Diao H, Guo C, Lin D and Zhang Y:
Intein-mediated expression is an effective approach in the study of
beta-defensins. Biochem Biophys Res Commun. 357:840–846. 2007.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Dong J, Yu H, Zhang Y, Diao H and Lin D:
Soluble fusion expression and characterization of human
beta-defensin 3 using a novel approach. Protein Pept Lett.
18:1126–1132. 2011. View Article : Google Scholar : PubMed/NCBI
|
14
|
Yenugu S, Chintalgattu V, Wingard CJ,
Radhakrishnan Y, French FS and Hall SH: Identification, cloning and
functional characterization of novel beta-defensins in the rat
(Rattus norvegicus). Reprod Biol Endocrinol. 4:72006.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Abdiche Y, Malashock D, Pinkerton A and
Pons J: Determining kinetics and affinities of protein interactions
using a parallel real-time label-free biosensor, the Octet. Anal
Biochem. 377:209–217. 2008. View Article : Google Scholar : PubMed/NCBI
|
16
|
Do T, Ho F, Heidecker B, Witte K, Chang L
and Lerner L: A rapid method for determining dynamic binding
capacity of resins for the purification of proteins. Protein Expr
Purif. 60:147–150. 2008. View Article : Google Scholar : PubMed/NCBI
|
17
|
Mathys S, Evans TC, Chute IC, et al:
Characterization of a self-splicing mini-intein and its conversion
into autocatalytic N- and C-terminal cleavage elements: facile
production of protein building blocks for protein ligation. Gene.
231:1–13. 1999. View Article : Google Scholar
|
18
|
Schägger H and von Jagow G: Tricine-sodium
dodecyl sulfate-polyacrylamide gel electrophoresis for the
separation of proteins in the range from 1 to 100 kDa. Anal
Biochem. 166:368–379. 1987.PubMed/NCBI
|
19
|
Andersson E, Rydengård V, Sonesson A,
Mörgelin M, Björck L and Schmidtchen A: Antimicrobial activities of
heparin-binding peptides. Eur J Biochem. 271:1219–1226. 2004.
View Article : Google Scholar : PubMed/NCBI
|
20
|
McCullough BJ, Kalapothakis JM, Chin W, et
al: Binding a heparin derived disaccharide to defensin inspired
peptides: insights to antimicrobial inhibition from gas-phase
measurements. Phys Chem Chem Phys. 12:3589–3596. 2010. View Article : Google Scholar
|
21
|
Banki MR, Feng L and Wood DW: Simple
bioseparations using self-cleaving elastin-like polypeptide tags.
Nat Methods. 2:659–661. 2005. View
Article : Google Scholar : PubMed/NCBI
|
22
|
Guo C, Diao H, Lian Y, et al: Recombinant
expression and characterization of an epididymis-specific
antimicrobial peptide BIN1b/SPAG11E. J Biotechnol. 139:33–37. 2009.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Zhao Y, Diao H, Ni Z, Hu S, Yu H and Zhang
Y: The epididymis-specific antimicrobial peptide β-defensin 15 is
required for sperm motility and male fertility in the rat
(Rattus norvegicus). Cell Mol Life Sci. 68:697–708.
2011.
|
24
|
Pazgier M, Hoover DM, Yang D, Lu W and
Lubkowski J: Human beta-defensins. Cell Mol Life Sci. 63:1294–1313.
2006. View Article : Google Scholar
|
25
|
Liapina LA, Kondashevskaia MV, Kokriakov
VN and Shamova OV: Interaction of heparin with defensin, a
nonenzymatic cationic protein from neutrophils. Vopr Med Khim.
38:39–42. 1992.(In Russian).
|
26
|
Seo ES, Blaum BS, Vargues T, et al:
Interaction of human β-defensin 2 (HBD2) with glycosaminoglycans.
Biochemistry. 49:10486–10495. 2010.
|
27
|
Yang D, Chertov O, Bykovskaia SN, et al:
Beta-defensins: linking innate and adaptive immunity through
dendritic and T cell CCR6. Science. 286:525–528. 1999. View Article : Google Scholar : PubMed/NCBI
|
28
|
Chen X, Niyonsaba F, Ushio H, et al:
Antimicrobial peptides human beta-defensin (hBD)-3 and hBD-4
activate mast cells and increase skin vascular permeability. Eur J
Immunol. 37:434–444. 2007. View Article : Google Scholar : PubMed/NCBI
|
29
|
Hoover DM, Boulegue C, Yang D, et al: The
structure of human macrophage inflammatory protein-3alpha/CCL20.
Linking antimicrobial and CC chemokine receptor-6-binding
activities with human beta-defensins. J Biol Chem. 277:37647–37654.
2002. View Article : Google Scholar
|
30
|
Vargues T, Morrison GJ, Seo ES, et al:
Efficient production of human beta-defensin 2 (HBD2) in
Escherichia coli. Protein Pept Lett. 16:668–676. 2009.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Ouellet M, Otis F, Voyer N and Auger M:
Biophysical studies of the interactions between 14-mer and 21-mer
model amphipathic peptides and membranes: insights on their modes
of action. Biochim Biophys Acta. 1758:1235–1244. 2006. View Article : Google Scholar
|
32
|
Shai Y: Mechanism of the binding,
insertion and destabilization of phospholipid bilayer membranes by
alpha-helical antimicrobial and cell non-selective membrane-lytic
peptides. Biochim Biophys Acta. 1462:55–70. 1999. View Article : Google Scholar : PubMed/NCBI
|
33
|
Buffy JJ, Hong T, Yamaguchi S, Waring AJ,
Lehrer RI and Hong M: Solid-state NMR investigation of the depth of
insertion of protegrin-1 in lipid bilayers using paramagnetic
Mn2+. Biophys J. 85:2363–2373. 2003. View Article : Google Scholar : PubMed/NCBI
|
34
|
Motzkus D, Schulz-Maronde S, Heitland A,
et al: The novel beta-defensin DEFB123 prevents
lipopolysaccharide-mediated effects in vitro and in vivo. FASEB J.
20:1701–1702. 2006. View Article : Google Scholar : PubMed/NCBI
|
35
|
Liu H, Yu H, Gu Y, et al: Human
beta-defensin DEFB126 is capable of inhibiting LPS-mediated
inflammation. Appl Microbiol Biotechnol. 97:3395–3408. 2013.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Yu H, Dong J, Gu Y, Liu H, Xin A, et al:
The novel human β-defensin 114 regulates lipopolysaccharide
(LPS)-mediated inflammation and protects sperm from motility loss.
J Biol Chem. 288:12270–12282. 2013.
|