1
|
Yan BC, Park JH, Ahn JH, Lee JC, Won MH
and Kang IJ: Postsynaptic density protein (PSD)-95 expression is
markedly decreased in the hippocampal CA1 region after experimental
ischemia-reperfusion injury. J Neurol Sci. 330:111–116. 2013.
View Article : Google Scholar
|
2
|
Tu Q, Wang R, Ding B, Zhong W and Cao H:
Protective and antioxidant effect of Danshen polysaccharides on
cerebral ischemia/reperfusion injury in rats. Int J Biol Macromol.
60:268–271. 2013. View Article : Google Scholar : PubMed/NCBI
|
3
|
Wang Q, Kalogeris TJ, Wang M, Jones AW and
Korthuis RJ: Antecedent ethanol attenuates cerebral
ischemia/reperfusion-induced leukocyte-endothelial adhesive
interactions and delayed neuronal death: role of large conductance,
Ca2+-activated K+ channels. Microcirculation.
17:427–438. 2010.
|
4
|
Zhang F, Guo A, Liu C, Comb M and Hu B:
Phosphorylation and assembly of glutamate receptors after brain
ischemia. Stroke. 44:170–176. 2013. View Article : Google Scholar : PubMed/NCBI
|
5
|
Racay P, Tatarkova Z, Chomova M, Hatok J,
Kaplan P and Dobrota D: Mitochondrial calcium transport and
mitochondrial dysfunction after global brain ischemia in rat
hippocampus. Neurochem Res. 34:1469–1478. 2009. View Article : Google Scholar : PubMed/NCBI
|
6
|
Peng S, Kuang Z, Zhang Y, Xu H and Cheng
Q: The protective effects and potential mechanism of Calpain
inhibitor Calpeptin against focal cerebral ischemia-reperfusion
injury in rats. Mol Biol Rep. 38:905–912. 2011. View Article : Google Scholar : PubMed/NCBI
|
7
|
Su SC and Tsai LH: Cyclin-dependent
kinases in brain development and disease. Annu Rev Cell Dev Biol.
27:465–491. 2011. View Article : Google Scholar : PubMed/NCBI
|
8
|
Chen J and Wang ZF: Roles of
cyclin-dependent kinase 5 in central nervous system development and
neurodegenerative diseases. Sheng Li Xue Bao. 62:295–308.
2010.PubMed/NCBI
|
9
|
Ghosh A, Sarkar S, Mandal AK and Das N:
Neuroprotective role of nanoencapsulated quercetin in combating
ischemia-reperfusion induced neuronal damage in young and aged
rats. PLoS One. 8:e577352013. View Article : Google Scholar : PubMed/NCBI
|
10
|
Harry GJ and Lefebvre d’Hellencourt C:
Dentate gyrus: alterations that occur with hippocampal injury.
Neurotoxicology. 24:343–356. 2003. View Article : Google Scholar : PubMed/NCBI
|
11
|
Knapp LT and Klann E: Role of reactive
oxygen species in hippocampal long-term potentiation: contributory
or inhibitory? J Neurosci Res. 70:1–7. 2002. View Article : Google Scholar : PubMed/NCBI
|
12
|
Kishida KT and Klann E: Sources and
targets of reactive oxygen species in synaptic plasticity and
memory. Antioxid Redox Signal. 9:233–244. 2007. View Article : Google Scholar : PubMed/NCBI
|
13
|
Zhou L, Aon MA, Liu T and O’Rourke B:
Dynamic modulation of Ca2+ sparks by mitochondrial
oscillations in isolated guinea pig cardiomyocytes under oxidative
stress. J Mol Cell Cardiol. 51:632–639. 2011.
|
14
|
Winblad B, Engedal K, Soininen H, et al: A
1-year, randomized, placebo-controlled study of donepezil in
patients with mild to moderate AD. Neurology. 57:489–495.
2001.PubMed/NCBI
|
15
|
Fujiki M, Kobayashi H, Uchida S, Inoue R
and Ishii K: Neuroprotective effect of donepezil, a nicotinic
acetylcholine-receptor activator, on cerebral infarction in rats.
Brain Res. 1043:236–241. 2005. View Article : Google Scholar : PubMed/NCBI
|
16
|
Takada Y, Yonezawa A, Kume T, et al:
Nicotinic acetylcholine receptor-mediated neuroprotection by
donepezil against glutamate neurotoxicity in rat cortical neurons.
J Pharmacol Exp Ther. 306:772–777. 2003. View Article : Google Scholar
|
17
|
Akasofu S, Kimura M, Kosasa T, Sawada K
and Ogura H: Study of neuroprotection of donepezil, a therapy for
Alzheimer’s disease. Chem Biol Interact. 175:222–226. 2008.
|
18
|
Akasofu S, Sawada K, Kosasa T, Hihara H,
Ogura H and Akaike A: Donepezil attenuates excitotoxic damage
induced by membrane depolarization of cortical neurons exposed to
veratridine. Eur J Pharmacol. 588:189–197. 2008. View Article : Google Scholar : PubMed/NCBI
|
19
|
Fang S, Yan B, Wang D, et al: Chronic
effects of venlafaxine on synaptophysin and neuronal cell adhesion
molecule in the hippocampus of cerebral ischemic mice. Biochem Cell
Biol. 88:655–663. 2010.PubMed/NCBI
|
20
|
Min D, Mao X, Wu K, et al: Donepezil
attenuates hippocampal neuronal damage and cognitive deficits after
global cerebral ischemia in gerbils. Neurosci Lett. 510:29–33.
2012. View Article : Google Scholar : PubMed/NCBI
|
21
|
Block F: Global ischemia and behavioural
deficits. Prog Neurobiol. 58:279–295. 1999. View Article : Google Scholar : PubMed/NCBI
|
22
|
von Euler M, Bendel O, Bueters T, Sandin J
and von Euler G: Profound but transient deficits in learning and
memory after global ischemia using a novel water maze test. Behav
Brain Res. 166:204–210. 2006.PubMed/NCBI
|
23
|
Shukla V, Skuntz S and Pant HC:
Deregulated Cdk5 activity is involved in inducing Alzheimer’s
disease. Arch Med Res. 43:655–662. 2012.PubMed/NCBI
|
24
|
Mitsios N, Pennucci R, Krupinski J, et al:
Expression of cyclin-dependent kinase 5 mRNA and protein in the
human brain following acute ischemic stroke. Brain Pathol.
17:11–23. 2007. View Article : Google Scholar : PubMed/NCBI
|
25
|
Christophe M and Nicolas S: Mitochondria:
a target for neuroprotective interventions in cerebral
ischemia-reperfusion. Curr Pharm Des. 12:739–757. 2006. View Article : Google Scholar : PubMed/NCBI
|
26
|
Guo C, Tong L, Xi M, Yang H, Dong H and
Wen A: Neuroprotective effect of calycosin on cerebral ischemia and
reperfusion injury in rats. J Ethnopharmacol. 144:768–774. 2012.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Liu C, Wu JL, Gu J, et al: Baicalein
improves cognitive deficits induced by chronic cerebral
hypoperfusion in rats. Pharmacol Biochem Behav. 86:423–430. 2007.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Rhee SG, Yang KS, Kang SW, Woo HA and
Chang TS: Controlled elimination of intracellular H(2)O(2):
Regulation of peroxiredoxin, catalase, and glutathione peroxidase
via post-translational modification. Antioxid Redox Signal.
7:619–626. 2005. View Article : Google Scholar : PubMed/NCBI
|
29
|
Rashidian J, Rousseaux MW, Venderova K, et
al: Essential role of cytoplasmic cdk5 and Prx2 in multiple
ischemic injury models, in vivo. J Neurosci. 29:12497–12505. 2009.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Bendel O, Prunell G, Stenqvist A, et al:
Experimental subarachnoid hemorrhage induces changes in the levels
of hippocampal NMDA receptor subunit mRNA. Brain Res Mol Brain Res.
137:119–125. 2005. View Article : Google Scholar : PubMed/NCBI
|
31
|
Koh PO: Ischemic injury decreases
parvalbumin expression in a middle cerebral artery occlusion animal
model and glutamate-exposed HT22 cells. Neurosci Lett. 512:17–21.
2012. View Article : Google Scholar
|
32
|
Kliper E, Bashat DB, Bornstein NM, et al:
Cognitive decline after stroke: relation to inflammatory biomarkers
and hippocampal volume. Stroke. 44:1433–1435. 2013.PubMed/NCBI
|