1
|
Sakalihasan N, Limet R and Defawe OD:
Abdominal aortic aneurysm. Lancet. 365:1577–1589. 2005. View Article : Google Scholar : PubMed/NCBI
|
2
|
Lederle FA: The natural history of
abdominal aortic aneurysm. Acta Chir Belg. 109:7–12.
2009.PubMed/NCBI
|
3
|
Keaney JF: Oxidative stress and the
vascular wall. Circulation. 112:2585–2588. 2005. View Article : Google Scholar : PubMed/NCBI
|
4
|
Marumo T, Schini-Kerth VB, Fisslthaler B
and Busse R: Platelet-derived growth factor-stimulated superoxide
anion production modulates activation of transcription factor
NF-kappaB and expression of monocyte chemoattractant protein 1 in
human aortic smooth muscle cells. Circulation. 96:2361–2367. 1997.
View Article : Google Scholar
|
5
|
McCormick ML, Gavrila D and Weintraub NL:
Role of oxidative stress in the pathogenesis of abdominal aortic
aneurysms. Arterioscler Thromb Vasc Biol. 27:461–469. 2007.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Wang M, Lee E, Song W, et al: Microsomal
prostaglandin E synthase-1 deletion suppresses oxidative stress and
angiotensin II-induced abdominal aortic aneurysm formation.
Circulation. 117:1302–1309. 2008. View Article : Google Scholar : PubMed/NCBI
|
7
|
Satoh K, Nigro P, Matoba T, et al:
Cyclophilin A enhances vascular oxidative stress and the
development of angiotensin II-induced aortic aneurysms. Nat Med.
15:649–656. 2009. View
Article : Google Scholar : PubMed/NCBI
|
8
|
Xiong WF, Mactaggart J, Knispel R, et al:
Inhibition of reactive oxygen species attenuates aneurysm formation
in a murine model. Atherosclerosis. 202:128–134. 2009. View Article : Google Scholar : PubMed/NCBI
|
9
|
Perez-Vizcaino F and Duarte J: Flavonols
and cardiovascular disease. Mol Aspects Med. 31:478–494. 2010.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Hanasaki Y, Ogawa S and Fukui S: The
correlation between active oxygens scavenging and antioxidative
effects of flavonoids. Free Radic Biol Med. 16:845–850. 1994.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Loke WM, Proudfoot JM, McKinley AJ, et al:
Quercetin and its in vivo metabolites inhibit neutrophil-mediated
low-density lipoprotein oxidation. J Agric Food Chem. 56:3609–3615.
2008. View Article : Google Scholar : PubMed/NCBI
|
12
|
Loke WM, Proudfoot JM, Hodgson JM, et al:
Specific dietary polyphenols attenuate atherosclerosis in
apolipoprotein E knockout mice by alleviating inflammation and
endothelial dysfunction. Arterioscler Thromb Vasc Biol. 30:749–757.
2010. View Article : Google Scholar : PubMed/NCBI
|
13
|
Golledge J and Norman PE: Atherosclerosis
and abdominal aortic aneurysm: cause, response, or common risk
factors? Arterioscler Thromb Vasc Biol. 30:1075–1077. 2010.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Sanchez M, Galisteo M, Vera R, et al:
Quercetin downregulates NADPH oxidase, increases eNOS activity and
prevents endothelial dysfunction in spontaneously hypertensive
rats. J Hypertens. 24:75–84. 2006. View Article : Google Scholar : PubMed/NCBI
|
15
|
Romero M, Jiménez R, Sánchez M, et al:
Quercetin inhibits vascular superoxide production induced by
endothelin-1: Role of NADPH oxidase, uncoupled eNOS and PKC.
Atherosclerosis. 202:58–67. 2009. View Article : Google Scholar : PubMed/NCBI
|
16
|
Wang L, Wang B, Li H, et al: Quercetin, a
flavonoid with anti-inflammatory activity, suppresses the
development of abdominal aortic aneurysms in mice. Eur J Pharmacol.
690:133–141. 2012. View Article : Google Scholar : PubMed/NCBI
|
17
|
Zhao H, Kalivendi S, Zhang H, et al:
Superoxide reacts with hydroethidine but forms a fluorescent
product that is distinctly different from ethidium: potential
implications in intracellular fluorescence detection of superoxide.
Free Radic Biol Med. 34:1359–1368. 2003. View Article : Google Scholar
|
18
|
Pryor WA and Squadrito GL: The chemistry
of peroxynitrite: a product from the reaction of nitric oxide with
superoxide. Am J Physiol. 268:L699–L722. 1995.PubMed/NCBI
|
19
|
Wang Y, Krishna S and Golledge J: The
calcium chloride-induced rodent model of abdominal aortic aneurysm.
Atherosclerosis. 226:29–39. 2013. View Article : Google Scholar : PubMed/NCBI
|
20
|
Miller FJ Jr, Sharp WJ, Fang X, Oberley
LW, Oberley TD and Weintraub NL: Oxidative stress in human
abdominal aortic aneurysms: a potential mediator of aneurysmal
remodeling. Arterioscler Thromb Vasc Biol. 22:560–565. 2002.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Yajima N, Masuda M, Miyazaki M, Nakajima
N, Chien S and Shyy JYJ: Oxidative stress is involved in the
development of experimental abdominal aortic aneurysm: A study of
the transcription profile with complementary DNA microarray. J Vasc
Surg. 36:379–385. 2002. View Article : Google Scholar : PubMed/NCBI
|
22
|
Schini-Kerth VB, Etienne-Selloum N,
Chataigneau T and Auger C: Vascular protection by natural
product-derived polyphenols: in vitro and in vivo evidence. Planta
Med. 77:1161–1167. 2011. View Article : Google Scholar : PubMed/NCBI
|
23
|
Palmieri D, Pane B, Barisione C, et al:
Resveratrol counteracts systemic and local inflammation involved in
early abdominal aortic aneurysm development. J Surg Res.
171:e237–e246. 2011. View Article : Google Scholar : PubMed/NCBI
|
24
|
Kaneko H, Anzai T, Morisawa M, et al:
Resveratrol prevents the development of abdominal aortic aneurysm
through attenuation of inflammation, oxidative stress, and
neovascularization. Atherosclerosis. 217:350–357. 2011. View Article : Google Scholar : PubMed/NCBI
|
25
|
Griendling KK and FitzGerald GA: Oxidative
stress and cardiovascular injury: Part I: basic mechanisms and
in vivo monitoring of ROS. Circulation. 108:1912–1916. 2003.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Miyamoto Y, Koh YH, Park YS, et al:
Oxidative stress caused by inactivation of glutathione peroxidase
and adaptive responses. Biol Chem. 384:567–574. 2003. View Article : Google Scholar : PubMed/NCBI
|
27
|
Dias AS, Porawski M, Alonso M, Marroni N,
Collado PS and González-Gallego J: Quercetin decreases oxidative
stress, NF-kappaB activation, and iNOS overexpression in liver of
streptozotocin-induced diabetic rats. J Nutr. 135:2299–2304.
2005.PubMed/NCBI
|
28
|
Mahesh T and Menon VP: Quercetin
allievates oxidative stress in streptozotocin-induced diabetic
rats. Phytother Res. 18:123–127. 2004. View
Article : Google Scholar : PubMed/NCBI
|
29
|
Moreira AJ, Fraga C, Alonso M, et al:
Quercetin prevents oxidative stress and NF-kappa B activation in
gastric mucosa of portal hypertensive rats. Biochem Pharmacol.
68:1939–1946. 2004. View Article : Google Scholar : PubMed/NCBI
|
30
|
Thomas M, Gavrila D, McCormick ML, et al:
Deletion of p47(phox) attenuates angiotensin II-induced abdominal
aortic aneurysm formation in apolipoprotein E-deficient mice.
Circulation. 114:404–413. 2006. View Article : Google Scholar : PubMed/NCBI
|
31
|
Stuehr DJ: Mammalian nitric oxide
synthases. Biochim Biophys Acta. 1411:217–230. 1999. View Article : Google Scholar
|
32
|
Kim BH, Cho SM, Reddy AM, Kim YS, Min KR
and Kim Y: Down-regulatory effect of quercitrin gallate on nuclear
factor-kappaB-dependent inducible nitric oxide synthase expression
in lipopolysaccharide-stimulated macrophages RAW 264.7. Biochem
Pharmacol. 69:1577–1583. 2005. View Article : Google Scholar
|
33
|
Bhaskar S, Shalini V and Helen A:
Quercetin regulates oxidized LDL induced inflammatory changes in
human PBMCs by modulating the TLR-NF-kappaB signaling pathway.
Immunobiology. 216:367–373. 2011. View Article : Google Scholar : PubMed/NCBI
|
34
|
Castier Y, Brandes RP, Leseche G, Tedgui A
and Lehoux S: p47phox-Dependent NADPH oxidase regulates
flow-induced vascular remodeling. Circ Res. 97:533–540. 2005.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Ejiri J, Inoue N, Tsukube T, et al:
Oxidative stress in the pathogenesis of thoracic aortic aneurysm.
Cardiovasc Res. 59:988–996. 2003. View Article : Google Scholar : PubMed/NCBI
|
36
|
Liu X, Manzano G, Lovett DH and Kim HT:
Role of AP-1 and RE-1 binding sites in matrix metalloproteinase-2
transcriptional regulation in skeletal muscle atrophy. Biochem
Biophys Res Commun. 396:219–223. 2010. View Article : Google Scholar : PubMed/NCBI
|
37
|
Kandasamy AD, Chow AK, Ali MAM and Schulz
R: Matrix metalloproteinase-2 and myocardial oxidative stress
injury: beyond the matrix. Cardiovasc Res. 85:413–423. 2010.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Kar S, Subbaram S, Carrico PM and Melendez
JA: Redox-control of matrix metalloproteinase-1: A critical link
between free radicals, matrix remodeling and degenerative disease.
Respir Physiol Neurobiol. 174:299–306. 2010. View Article : Google Scholar : PubMed/NCBI
|
39
|
Shen HM and Liu ZG: JNK signaling pathway
is a key modulator in cell death mediated by reactive oxygen and
nitrogen species. Free Radic Biol Med. 40:928–939. 2006. View Article : Google Scholar : PubMed/NCBI
|
40
|
Yoshimura K, Aoki H, Ikeda Y, et al:
Regression of abdominal aortic aneurysm by inhibition of c-Jun
N-terminal kinase. Nat Med. 11:1330–1338. 2005. View Article : Google Scholar : PubMed/NCBI
|
41
|
Manning AM and Davis RJ: Targeting JNK for
therapeutic benefit: from junk to gold? Nat Rev Drug Discov.
2:554–565. 2003. View Article : Google Scholar : PubMed/NCBI
|