1
|
Christie JD, Carby M, Bag R, Corris P,
Hertz M and Weill D; ISHLT Working Group on Primary Lung Graft
Dysfunction. Report of the ISHLT Working Group on Primary Lung
Graft Dysfunction part II: definition. A consensus statement of the
International Society for Heart and Lung Transplantation. J Heart
Lung Transplant. 24:1454–1459. 2005. View Article : Google Scholar : PubMed/NCBI
|
2
|
Ng CS, Wan S, Yim AP and Arifi AA:
Pulmonary dysfunction after cardiac surgery. Chest. 121:1269–1277.
2002. View Article : Google Scholar : PubMed/NCBI
|
3
|
Shimamoto A, Pohlman TH, Shomura S,
Tarukawa T, Takao M and Shimpo H: Toll-like receptor 4 mediates
lung ischemia-reperfusion injury. Ann Thorac Surg. 82:2017–2023.
2006. View Article : Google Scholar : PubMed/NCBI
|
4
|
Ambrosio G and Tritto I: Reperfusion
injury: experimental evidence and clinical implications. Am Heart
J. 138:S69–S75. 1999. View Article : Google Scholar : PubMed/NCBI
|
5
|
Reino DC, Pisarenko V, Palange D, et al:
Trauma hemorrhagic shock-induced lung injury involves a
gut-lymph-induced TLR4 pathway in mice. PLoS One. 6:e148292011.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Zhao M, Fernandez LG, Doctor A, et al:
Alveolar macrophage activation is a key initiation signal for acute
lung ischemia-reperfusion injury. Am J Physiol Lung Cell Mol
Physiol. 291:L1018–L1026. 2006. View Article : Google Scholar : PubMed/NCBI
|
7
|
Gu J, Chen J, Xia P, Tao G, Zhao H and Ma
D: Dexmedetomidine attenuates remote lung injury induced by renal
ischemia-reperfusion in mice. Acta Anaesthesiol Scand.
55:1272–1278. 2011. View Article : Google Scholar : PubMed/NCBI
|
8
|
Taniguchi T, Kidani Y, Kanakura H,
Takemoto Y and Yamamoto K: Effects of dexmedetomidine on mortality
rate and inflammatory responses to endotoxin-induced shock in rats.
Crit Care Med. 32:1322–1326. 2004. View Article : Google Scholar : PubMed/NCBI
|
9
|
Memis̨ D, Hekimoğlu S, Vatan I, Yandim T,
Yüksel M and Süt N: Effects of midazolam and dexmedetomidine on
inflammatory responses and gastric intramucosal pH to sepsis, in
critically ill patients. Br J Anaesth. 98:550–552. 2007.PubMed/NCBI
|
10
|
Yang CL, Tsai PS and Huang CJ: Effects of
dexmedetomidine on regulating pulmonary inflammation in a rat model
of ventilator-induced lung injury. Acta Anaesthesiol Taiwan.
46:151–159. 2008. View Article : Google Scholar : PubMed/NCBI
|
11
|
Arumugam TV, Okun E, Tang SC, Thundyil J,
Taylor SM and Woodruff TM: Toll-like receptors in
ischemia-reperfusion injury. Shock. 32:4–16. 2009. View Article : Google Scholar : PubMed/NCBI
|
12
|
Prakash A, Mesa KR, Wilhelmsen K, Xu F,
Dodd-o JM and Hellman J: Alveolar macrophages and Toll-like
receptor 4 mediate ventilated lung ischemia reperfusion injury in
mice. Anesthesiology. 117:822–835. 2012. View Article : Google Scholar : PubMed/NCBI
|
13
|
Shi QQ, Wang H and Fang H: Dose-response
and mechanism of protective functions of selective alpha-2 agonist
dexmedetomidine on acute lung injury in rats. Saudi Med J.
33:375–381. 2012.PubMed/NCBI
|
14
|
Yang CL, Chen CH, Tsai PS, Wang TY and
Huang CJ: Protective effects of dexmedetomidine-ketamine
combination against ventilator-induced lung injury in endotoxemia
rats. J Surg Res. 167:e273–e281. 2011. View Article : Google Scholar : PubMed/NCBI
|
15
|
Yang CH, Tsai PS, Wang TY and Huang CJ:
Dexmedetomidine-ketamine combination mitigates acute lung injury in
haemorrhagic shock rats. Resuscitation. 80:1204–1210. 2009.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) Method. Methods. 25:402–408. 2001.
|
17
|
Emaminia A, Lapar DJ, Zhao Y, et al:
Adenosine A2A agonist improves lung function during ex
vivo lung perfusion. Ann Thorac Surg. 92:1840–1846. 2011.
|
18
|
Guo W, Ge D, Wang Q, et al: Diazoxide
decreases ischemia-reperfusion injury in a rat model of lung
transplantation. Transplant Proc. 43:2510–2516. 2011. View Article : Google Scholar : PubMed/NCBI
|
19
|
Jan WC, Chen CH, Tsai PS and Huang CJ:
Limb ischemic preconditioning mitigates lung injury induced by
haemorrhagic shock/resuscitation in rats. Resuscitation.
82:760–766. 2011. View Article : Google Scholar : PubMed/NCBI
|
20
|
Xu B, Gao X, Xu J, et al: Ischemic
postconditioning attenuates lung reperfusion injury and reduces
systemic proinflammatory cytokine release via heme oxygenase 1. J
Surg Res. 166:e157–e164. 2011. View Article : Google Scholar : PubMed/NCBI
|
21
|
Dahmani S, Rouelle D, Gressens P and Mantz
J: Characterization of the postconditioning effect of
dexmedetomidine in mouse organotypic hippocampal slice cultures
exposed to oxygen and glucose deprivation. Anesthesiology.
112:373–383. 2010. View Article : Google Scholar : PubMed/NCBI
|
22
|
Hoffman WE, Kochs E, Werner C, Thomas C
and Albrecht RF: Dexmedetomidine improves neurologic outcome from
incomplete ischemia in the rat. Reversal by the alpha 2-adrenergic
antagonist atipamezole. Anesthesiology. 75:328–332. 1991.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Eser O, Fidan H, Sahin O, et al: The
influence of dexmedetomidine on ischemic rat hippocampus. Brain
Res. 1218:250–256. 2008. View Article : Google Scholar : PubMed/NCBI
|
24
|
Cosar M, Eser O, Fidan H, et al: The
neuroprotective effect of dexmedetomidine in the hippocampus of
rabbits after subarachnoid hemorrhage. Surg Neurol. 71:54–59. 2009.
View Article : Google Scholar
|
25
|
Nishina K, Akamatsu H, Mikawa K, et al:
The effects of clonidine and dexmedetomidine on human neutrophil
functions. Anesth Analg. 88:452–458. 1999.
|
26
|
Tasdogan M, Memis D, Sut N and Yuksel M:
Results of a pilot study on the effects of propofol and
dexmedetomidine on inflammatory responses and intraabdominal
pressure in severe sepsis. J Clin Anesth. 21:394–400. 2009.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Taniguchi T, Kurita A, Kobayashi K,
Yamamoto K and Inaba H: Dose- and time-related effects of
dexmedetomidine on mortality and inflammatory responses to
endotoxin-induced shock in rats. J Anesth. 22:221–228. 2008.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Sezer A, Memis̨ D, Usta U and Süt N: The
effect of dexmedetomidine on liver histopathology in a rat sepsis
model: an experimental pilot study. Ulus Travma Acil Cerrahi Derg.
16:108–112. 2010.PubMed/NCBI
|
29
|
Qiao H, Sanders RD, Ma D, Wu X and Maze M:
Sedation improves early outcome in severely septic Sprague Dawley
rats. Crit Care. 13:R1362009. View
Article : Google Scholar : PubMed/NCBI
|
30
|
Arslan F, Keogh B, McGuirk P and Parker
AE: TLR2 and TLR4 in ischemia reperfusion injury. Mediators
Inflamm. 2010:7042022010. View Article : Google Scholar : PubMed/NCBI
|
31
|
Li Y, Xiang M, Yuan Y, et al: Hemorrhagic
shock augments lung endothelial cell activation: role of temporal
alterations of TLR4 and TLR2. Am J Physiol Regul Integr Comp
Physiol. 297:R1670–R1680. 2009. View Article : Google Scholar : PubMed/NCBI
|
32
|
Fan J, Li Y, Vodovotz Y, Billiar TR and
Wilson MA: Hemorrhagic shock-activated neutrophils augment TLR4
signaling-induced TLR2 upregulation in alveolar macrophages: role
in hemorrhage-primed lung inflammation. Am J Physiol Lung Cell Mol
Physiol. 290:L738–L746. 2006. View Article : Google Scholar : PubMed/NCBI
|
33
|
Gao Y, Fang X, Sun H, et al: Toll-like
receptor 4-mediated myeloid differentiation factor 88-dependent
signaling pathway is activated by cerebral ischemia-reperfusion in
hippocampal CA1 region in mice. Biol Pharm Bull. 32:1665–1671.
2009. View Article : Google Scholar : PubMed/NCBI
|
34
|
Feng Y, Zhao H, Xu X, et al: Innate immune
adaptor MyD88 mediates neutrophil recruitment and myocardial injury
after ischemia-reperfusion in mice. Am J Physiol Heart Circ
Physiol. 295:H1311–H1318. 2008. View Article : Google Scholar : PubMed/NCBI
|
35
|
Hua F, Ha T, Ma J, et al: Blocking the
MyD88-dependent pathway protects the myocardium from
ischemia/reperfusion injury in rat hearts. Biochem Biophys Res
Commun. 338:1118–1125. 2005. View Article : Google Scholar : PubMed/NCBI
|
36
|
Wang S, Schmaderer C, Kiss E, et al:
Recipient Toll-like receptors contribute to chronic graft
dysfunction by both MyD88- and TRIF-dependent signaling. Dis Model
Mech. 3:92–103. 2010. View Article : Google Scholar : PubMed/NCBI
|
37
|
Wu H, Chen G, Wyburn KR, et al: TLR4
activation mediates kidney ischemia/reperfusion injury. J Clin
Invest. 117:2847–2859. 2007. View
Article : Google Scholar : PubMed/NCBI
|
38
|
Ben DF, Yu XY, Ji GY, et al: TLR4 mediates
lung injury and inflammation in intestinal ischemia-reperfusion. J
Surg Res. 174:326–333. 2012. View Article : Google Scholar : PubMed/NCBI
|
39
|
Zanotti G, Casiraghi M, Abano JB, et al:
Novel critical role of Toll-like receptor 4 in lung
ischemia-reperfusion injury and edema. Am J Physiol Lung Cell Mol
Physiol. 297:L52–L63. 2009. View Article : Google Scholar : PubMed/NCBI
|
40
|
Dahmani S, Paris A, Jannier V, et al:
Dexmedetomidine increases hippocampal phosphorylated extracellular
signal-regulated protein kinase 1 and 2 content by an alpha
2-adrenoceptor-independent mechanism: evidence for the involvement
of imidazoline I1 receptors. Anesthesiology. 108:457–466. 2008.
View Article : Google Scholar
|
41
|
Zhang F, Ding T, Yu L, Zhong Y, Dai H and
Yan M: Dexmedetomidine protects against oxygen-glucose
deprivation-induced injury through the I2 imidazoline
receptor-PI3K/AKT pathway in rat C6 glioma cells. J Pharm
Pharmacol. 64:120–127. 2012. View Article : Google Scholar
|
42
|
Afonso J and Reis F: Dexmedetomidine:
current role in anesthesia and intensive care. Rev Bras Anestesiol.
62:118–133. 2012. View Article : Google Scholar : PubMed/NCBI
|