1
|
Liberzon I and Young EA: Effects of stress
and glucocorticoids on CNS oxytocin receptor binding.
Psychoneuroendocrinology. 22:411–422. 1997. View Article : Google Scholar : PubMed/NCBI
|
2
|
Khan S and Liberzon I: Topiramate
attenuates exaggerated acoustic startle in an animal model of PTSD.
Psychopharmacology (Berl). 172:225–229. 2004. View Article : Google Scholar : PubMed/NCBI
|
3
|
Iwamoto Y, Morinobu S, Takahashi T and
Yamawaki S: Single prolonged stress increases contextual freezing
and the expression of glycine transporter 1 and vesicle-associated
membrane protein 2 mRNA in the hippocampus of rats. Prog
Neuropsychopharmacol Biol Psychiatry. 31:642–651. 2007. View Article : Google Scholar
|
4
|
Joëls M: Functional actions of
corticosteroids in the hippocampus. Eur J Pharmacol. 583:312–321.
2008.
|
5
|
Buell JS and Dawson-Hughes B: Vitamin D
and neurocognitive dysfunction: preventing ‘D’ecline? Mol Aspects
Med. 29:415–422. 2008.PubMed/NCBI
|
6
|
Kalueff AV and Tuohimaa P: Neurosteroid
hormone vitamin D and its utility in clinical nutrition. Curr Opin
Clin Nutr Metab Care. 10:12–19. 2007. View Article : Google Scholar : PubMed/NCBI
|
7
|
Bartoccini E, Marini F, Damaskopoulou E,
et al: Nuclear lipid microdomains regulate nuclear vitamin D3
uptake and influence embryonic hippocampal cell differentiation.
Mol Biol Cell. 22:3022–3031. 2011. View Article : Google Scholar : PubMed/NCBI
|
8
|
Pike JW and Meyer MB: The vitamin D
receptor: new paradigms for the regulation of gene expression by
1,25-dihydroxyvitamin D(3). Endocrinol Metab Clin North Am.
39:255–269. 2010. View Article : Google Scholar
|
9
|
Freeman MR, Cinar B, Kim J, et al: Transit
of hormonal and EGF receptor-dependent signals through
cholesterol-rich membranes. Steroids. 72:210–217. 2007. View Article : Google Scholar : PubMed/NCBI
|
10
|
Marini F, Bartoccini E, Cascianelli G, et
al: Effect of 1alpha,25-dihydroxyvitamin D3 in embryonic
hippocampal cells. Hippocampus. 20:696–705. 2010.PubMed/NCBI
|
11
|
Kuningas M, Mooijaart SP, Jolles J,
Slagboom PE, Westendorp RG and van Heemst D: VDR gene variants
associate with cognitive function and depressive symptoms in old
age. Neurobiol Aging. 30:466–473. 2009. View Article : Google Scholar : PubMed/NCBI
|
12
|
Burne TH, Johnston AN, McGrath JJ and
Mackay-Sim A: Swimming behaviour and post-swimming activity in
Vitamin D receptor knockout mice. Brain Res Bull. 69:74–78. 2006.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Kalueff AV, Lou YR, Laaksi I and Tuohimaa
P: Increased anxiety in mice lacking vitamin D receptor gene.
Neuroreport. 15:1271–1274. 2004. View Article : Google Scholar : PubMed/NCBI
|
14
|
Sutherland MK, Somerville MJ, Yoong LK,
Bergeron C, Haussler MR and McLachlan DR: Reduction of vitamin D
hormone receptor mRNA levels in Alzheimer as compared to Huntington
hippocampus: correlation with calbindin-28k mRNA levels. Brain Res
Mol Brain Res. 13:239–250. 1992. View Article : Google Scholar : PubMed/NCBI
|
15
|
Langub MC, Herman JP, Malluche HH and
Koszewski NJ: Evidence of functional vitamin D receptors in rat
hippocampus. Neuroscience. 104:49–56. 2001. View Article : Google Scholar : PubMed/NCBI
|
16
|
Thibault O, Pancani T, Landfield PW and
Norris CM: Reduction in neuronal L-type calcium channel activity in
a double knock-in mouse model of Alzheimer’s disease. Biochim
Biophys Acta. 1822:546–549. 2012.PubMed/NCBI
|
17
|
Takahashi T, Morinobu S, Iwamoto Y and
Yamawaki S: Effect of paroxetine on enhanced contextual fear
induced by single prolonged stress in rats. Psychopharmacology
(Berl). 189:165–173. 2006. View Article : Google Scholar : PubMed/NCBI
|
18
|
Liberzon I, Krstov M and Young EA:
Stress-restress: effects on ACTH and fast feedback.
Psychoneuroendocrinology. 22:443–453. 1997. View Article : Google Scholar : PubMed/NCBI
|
19
|
Stumpf WE, Sar M, Clark SA and DeLuca HF:
Brain target sites for 1,25-dihydroxyvitamin D3. Science.
215:1403–1405. 1982. View Article : Google Scholar : PubMed/NCBI
|
20
|
Eyles DW, Smith S, Kinobe R, Hewison M and
McGrath JJ: Distribution of the vitamin D receptor and 1
alpha-hydroxylase in human brain. J Chem Neuroanat. 29:21–30. 2005.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Kiraly SJ, Kiraly MA, Hawe RD and Makhani
N: Vitamin D as a neuroactive substance: review. Scientific World
Journal. 6:125–139. 2006. View Article : Google Scholar : PubMed/NCBI
|
22
|
Oudshoorn C, Mattace-Raso FU, van der
Velde N, Colin EM and van der Cammen TJ: Higher serum vitamin D3
levels are associated with better cognitive test performance in
patients with Alzheimer’s disease. Dement Geriatr Cogn Disord.
25:539–543. 2008.PubMed/NCBI
|
23
|
Obradovic D, Gronemeyer H, Lutz B and Rein
T: Cross-talk of vitamin D and glucocorticoids in hippocampal
cells. J Neurochem. 96:500–509. 2006. View Article : Google Scholar : PubMed/NCBI
|
24
|
Minasyan A, Keisala T, Lou YR, Kalueff AV
and Tuohimaa P: Neophobia, sensory and cognitive functions, and
hedonic responses in vitamin D receptor mutant mice. J Steroid
Biochem Mol Biol. 104:274–280. 2007. View Article : Google Scholar : PubMed/NCBI
|
25
|
Bouillon R, Carmeliet G, Daci E, Segaert S
and Verstuyf A: Vitamin D metabolism and action. Osteoporos Int.
8(Suppl 2): S13–S19. 1998. View Article : Google Scholar
|
26
|
Brewer LD, Thibault V, Chen KC, Langub MC,
Landfield PW and Porter NM: Vitamin D hormone confers
neuroprotection in parallel with downregulation of L-type calcium
channel expression in hippocampal neurons. J Neurosci. 21:98–108.
2001.PubMed/NCBI
|
27
|
Brewer LD, Porter NM, Kerr DS, Landfield
PW and Thibault O: Chronic 1alpha,25-(OH)2 vitamin D3 treatment
reduces Ca2+-mediated hippocampal biomarkers of aging.
Cell Calcium. 40:277–286. 2006. View Article : Google Scholar : PubMed/NCBI
|
28
|
Brown J, Bianco JI, McGrath JJ and Eyles
DW: 1,25-dihydroxyvitamin D3 induces nerve growth factor, promotes
neurite outgrowth and inhibits mitosis in embryonic rat hippocampal
neurons. Neurosci Lett. 343:139–143. 2003. View Article : Google Scholar : PubMed/NCBI
|
29
|
Cornet A, Baudet C, Neveu I, Baron-Van
Evercooren A, Brachet P and Naveilhan P: 1,25-Dihydroxyvitamin D3
regulates the expression of VDR and NGF gene in Schwann cells in
vitro. J Neurosci Res. 53:742–746. 1998. View Article : Google Scholar : PubMed/NCBI
|
30
|
Neveu I, Naveilhan P, Jehan F, et al:
1,25-dihydroxyvitamin D3 regulates the synthesis of nerve growth
factor in primary cultures of glial cells. Brain Res Mol Brain Res.
24:70–76. 1994. View Article : Google Scholar : PubMed/NCBI
|
31
|
Dursun E, Gezen-Ak D and Yilmazer S: A
novel perspective for Alzheimer’s disease: vitamin D receptor
suppression by amyloid-β and preventing the amyloid-β induced
alterations by vitamin D in cortical neurons. J Alzheimers Dis.
23:207–219. 2011.
|
32
|
Taniura H, Ito M, Sanada N, et al: Chronic
vitamin D3 treatment protects against neurotoxicity by glutamate in
association with upregulation of vitamin D receptor mRNA expression
in cultured rat cortical neurons. J Neurosci Res. 83:1179–1189.
2006. View Article : Google Scholar : PubMed/NCBI
|
33
|
Almeras L, Eyles D, Benech P, et al:
Developmental vitamin D deficiency alters brain protein expression
in the adult rat: implications for neuropsychiatric disorders.
Proteomics. 7:769–780. 2007. View Article : Google Scholar : PubMed/NCBI
|
34
|
Eyles D, Almeras L, Benech P, et al:
Developmental vitamin D deficiency alters the expression of genes
encoding mitochondrial, cytoskeletal and synaptic proteins in the
adult rat brain. J Steroid Biochem Mol Biol. 103:538–545. 2007.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Cantorna MT, Hayes CE and DeLuca HF:
1,25-Dihydroxyvitamin D3 reversibly blocks the progression of
relapsing encephalomyelitis, a model of multiple sclerosis. Proc
Natl Acad Sci USA. 93:7861–7864. 1996. View Article : Google Scholar : PubMed/NCBI
|
36
|
Garcion E, Wion-Barbot N, Montero-Menei
CN, Berger F and Wion D: New clues about vitamin D functions in the
nervous system. Trends Endocrinol Metab. 13:100–105. 2002.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Lansdowne AT and Provost SC: Vitamin D3
enhances mood in healthy subjects during winter. Psychopharmacology
(Berl). 135:319–323. 1998. View Article : Google Scholar : PubMed/NCBI
|
38
|
Przybelski RJ and Binkley NC: Is vitamin D
important for preserving cognition? A positive correlation of serum
25-hydroxyvitamin D concentration with cognitive function. Arch
Biochem Biophys. 460:202–205. 2007. View Article : Google Scholar : PubMed/NCBI
|
39
|
Wilkins CH, Sheline YI, Roe CM, Birge SJ
and Morris JC: Vitamin D deficiency is associated with low mood and
worse cognitive performance in older adults. Am J Geriatr
Psychiatry. 14:1032–1040. 2006. View Article : Google Scholar : PubMed/NCBI
|
40
|
Eyles D, Brown J, Mackay-Sim A, McGrath J
and Feron F: Vitamin D3 and brain development. Neuroscience.
118:641–653. 2003. View Article : Google Scholar
|
41
|
Becker A, Eyles DW, McGrath JJ and
Grecksch G: Transient prenatal vitamin D deficiency is associated
with subtle alterations in learning and memory functions in adult
rats. Behav Brain Res. 161:306–312. 2005. View Article : Google Scholar : PubMed/NCBI
|
42
|
Bergh JJ, Shao Y, Puente E, Duncan RL and
Farach-Carson MC: Osteoblast Ca(2+) permeability and
voltage-sensitive Ca(2+) channel expression is temporally regulated
by 1,25-dihydroxyvitamin D(3). Am J Physiol Cell Physiol.
290:C822–C831. 2006.
|
43
|
Naveilhan P, Neveu I, Wion D and Brachet
P: 1,25-Dihydroxyvitamin D3, an inducer of glial cell line-derived
neurotrophic factor. Neuroreport. 7:2171–2175. 1996. View Article : Google Scholar : PubMed/NCBI
|
44
|
Thibault O, Gant JC and Landfield PW:
Expansion of the calcium hypothesis of brain aging and Alzheimer’s
disease: minding the store. Aging Cell. 6:307–317. 2007.PubMed/NCBI
|
45
|
Xiao B, Yu B, Wang HT, Han F and Shi YX:
Single-prolonged stress induces apoptosis by activating cytochrome
C/caspase-9 pathway in a rat model of post-traumatic stress
disorder. Cell Mol Neurobiol. 31:37–43. 2011. View Article : Google Scholar : PubMed/NCBI
|
46
|
Sattler R and Tymianski M: Molecular
mechanisms of calcium-dependent excitotoxicity. J Mol Med (Berl).
78:3–13. 2000. View Article : Google Scholar
|
47
|
Arundine M and Tymianski M: Molecular
mechanisms of calcium-dependent neurodegeneration in
excitotoxicity. Cell Calcium. 34:325–337. 2003. View Article : Google Scholar : PubMed/NCBI
|
48
|
Thibault O, Hadley R and Landfield PW:
Elevated postsynaptic [Ca2+]i and L-type calcium channel activity
in aged hippocampal neurons: relationship to impaired synaptic
plasticity. J Neurosci. 21:9744–9756. 2001.
|
49
|
Veng LM, Mesches MH and Browning MD:
Age-related working memory impairment is correlated with increases
in the L-type calcium channel protein alpha1D (Cav1.3) in area CA1
of the hippocampus and both are ameliorated by chronic nimodipine
treatment. Brain Res Mol Brain Res. 110:193–202. 2003. View Article : Google Scholar
|