Limb-girdle muscular dystrophies: Where next after six decades from the first proposal (Review)
- Authors:
- Omar A. Mahmood
- Xin Mei Jiang
-
Affiliations: Department of Neurology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China - Published online on: March 13, 2014 https://doi.org/10.3892/mmr.2014.2048
- Pages: 1515-1532
-
Copyright: © Mahmood et al. This is an open access article distributed under the terms of Creative Commons Attribution License [CC BY_NC 3.0].
This article is mentioned in:
Abstract
Danièle N, Richard I and Bartoli M: Ins and outs of therapy in limb girdle muscular dystrophies. Int J Biochem Cell Biol. 39:1608–1624. 2007.PubMed/NCBI | |
Erb W: Dystrophia muscularis progressiva. Dtsch Z Nervenheilkd. 1:13–94. 173–261. 1891.(In German). | |
Leyden E: Klinik Der Rückenmarks-Krankheiten. 2. Hirschwald; Berlin: pp. 531–540. 1875, (In German). | |
Möbius PJ: Ueber die hereditären nervenkrankheiten. Samml Klin Votr 171. Breitkopf und Härtel; Leipzig: pp. 1505–1531. 1879, (In German). | |
Bell J: On pseudohypertrophic and allied types of progressive Muscular dystrophy. The Treasury of Human Inheritance. Fischer RA: 4(Part 4)Cambridge University Press; London: pp. 283–342. 1943 | |
Walton JN and Nattrass FJ: On the classification, natural history and treatment of the myopathies. Brain. 77:169–231. 1954. View Article : Google Scholar : PubMed/NCBI | |
Bushby KM and Gardner-Medwin D: The clinical, genetic and dystrophin characteristics of Becker muscular dystrophy. I. Natural history. J Neurol. 240:98–104. 1993. View Article : Google Scholar : PubMed/NCBI | |
Bushby KM: Diagnostic criteria for the limb-girdle muscular dystrophies: report of the ENMC Consortium on Limb-Girdle Dystrophies. Neuromuscul Disord. 5:71–74. 1995. View Article : Google Scholar : PubMed/NCBI | |
Hauser MA, Horrigan SK, Salmikangas P, et al: Myotilin is mutated in limb girdle muscular dystrophy 1A. Hum Mol Genet. 9:2141–2147. 2000. View Article : Google Scholar : PubMed/NCBI | |
Muchir A, Bonne G, van der Kooi AJ, et al: Identification of mutations in the gene encoding lamins A/C in autosomal dominant limb girdle muscular dystrophy with atrioventricular conduction disturbances (LGMD1B). Hum Mol Genet. 9:1453–1459. 2000. View Article : Google Scholar : PubMed/NCBI | |
Minetti C, Sotgia F, Bruno C, et al: Mutations in the caveolin-3 gene cause autosomal dominant limb-girdle muscular dystrophy. Nat Genet. 18:365–368. 1998. View Article : Google Scholar : PubMed/NCBI | |
Greenberg SA, Salajegheh M, Judge DP, et al: Etiology of limb girdle muscular dystrophy 1D/1E determined by laser capture microdissection proteomics. Ann Neurol. 71:141–145. 2012. View Article : Google Scholar : PubMed/NCBI | |
Harms MB, Sommerville RB, Allred P, et al: Exome sequencing reveals DNAJB6 mutations in dominantly-inherited myopathy. Ann Neurol. 71:407–416. 2012. View Article : Google Scholar : PubMed/NCBI | |
Sarparanta J, Jonson PH, Golzio C, et al: Mutations affecting the cytoplasmic functions of the co-chaperone DNAJB6 cause limb-girdle muscular dystrophy. Nat Genet. 44:450–455. 2012. View Article : Google Scholar : PubMed/NCBI | |
Palenzuela L, Andreu AL, Gàmez J, et al: A novel autosomal dominant limb-girdle muscular dystrophy (LGMD 1F) maps to 7q32.1-32.2. Neurology. 61:404–406. 2003. View Article : Google Scholar : PubMed/NCBI | |
Starling A, Kok F, Passos-Bueno MR, Vainzof M and Zatz M: A new form of autosomal dominant limb-girdle muscular dystrophy (LGMD1G) with progressive fingers and toes flexion limitation maps to chromosome 4p21. Eur J Hum Genet. 12:1033–1040. 2004. View Article : Google Scholar : PubMed/NCBI | |
Bisceglia L, Zoccolella S, Torraco A, et al: A new locus on 3p23-p25 for an autosomal-dominant limb-girdle muscular dystrophy, LGMD1H. Eur J Hum Genet. 18:636–641. 2010. View Article : Google Scholar : PubMed/NCBI | |
Richard I, Broux O, Allamand V, et al: Mutations in the proteolytic enzyme calpain 3 cause limb-girdle muscular dystrophy type 2A. Cell. 81:27–40. 1995. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Aoki M, Illa I, et al: Dysferlin, a novel skeletal muscle gene, is mutated in Miyoshi myopathy and limb girdle muscular dystrophy. Nat Genet. 20:31–36. 1998. View Article : Google Scholar : PubMed/NCBI | |
Noguchi S, McNally EM, Ben Othmane K, et al: Mutations in the dystrophin-associated protein gamma-sarcoglycan in chromosome 13 muscular dystrophy. Science. 270:819–822. 1995. View Article : Google Scholar : PubMed/NCBI | |
Roberds SL, Leturcq F, Allamand V, et al: Missense mutations in the adhalin gene linked to autosomal recessive muscular dystrophy. Cell. 78:625–633. 1994. View Article : Google Scholar : PubMed/NCBI | |
Lim LE, Duclos F, Broux O, et al: Beta-sarcoglycan: characterization and role in limb-girdle muscular dystrophy linked to 4q12. Nat Genet. 1:257–265. 1995. View Article : Google Scholar : PubMed/NCBI | |
Nigro V, de Sá Moreira E, Piluso G, et al: Autosomal recessive limb-girdle muscular dystrophy, LGMD2F, is caused by a mutation in the delta-sarcoglycan gene. Nat Genet. 14:195–198. 1996. View Article : Google Scholar : PubMed/NCBI | |
Moreira ES, Wiltshire TJ, Faulkner G, et al: Limb-girdle muscular dystrophy type 2G is caused by mutations in the gene encoding the sarcomeric protein telethonin. Nat Genet. 24:163–166. 2000. View Article : Google Scholar : PubMed/NCBI | |
Frosk P, Weiler T, Nylen E, et al: Limb-girdle muscular dystrophy type 2H associated with mutation in TRIM32, a putative E3-ubiquitin-ligase gene. Am J Hum Genet. 70:663–672. 2002. View Article : Google Scholar : PubMed/NCBI | |
Brockington M, Yuva Y, Prandini P, et al: Mutations in the fukutin-related protein gene (FKRP) identify limb girdle muscular dystrophy 2I as a milder allelic variant of congenital muscular dystrophy MDC1C. Hum Mol Genet. 10:2851–2859. 2001. View Article : Google Scholar : PubMed/NCBI | |
Haravuori H, Vihola A, Straub V, et al: Secondary calpain3 deficiency in 2q-linked muscular dystrophy: titin is the candidate gene. Neurology. 56:869–877. 2001. View Article : Google Scholar : PubMed/NCBI | |
Balci B, Uyanik G, Dincer P, et al: An autosomal recessive limb girdle muscular dystrophy (LGMD2) with mild mental retardation is allelic to Walker-Warburg syndrome (WWS) caused by a mutation in the POMT1 gene. Neuromuscul Disord. 15:271–275. 2005. View Article : Google Scholar : PubMed/NCBI | |
Bolduc V, Marlow G, Boycott KM, et al: Recessive mutations in the putative calcium-activated chloride channel Anoctamin 5 cause proximal LGMD2L and distal MMD3 muscular dystrophies. Am J Hum Genet. 86:213–221. 2010. View Article : Google Scholar : PubMed/NCBI | |
Godfrey C, Escolar D, Brockington M, et al: Fukutin gene mutations in steroid-responsive limb girdle muscular dystrophy. Ann Neurol. 60:603–610. 2006. View Article : Google Scholar : PubMed/NCBI | |
Biancheri R, Falace A, Tessa A, et al: POMT2 gene mutation in limb-girdle muscular dystrophy with inflammatory changes. Biochem Biophys Res Commun. 363:1033–1037. 2007. View Article : Google Scholar : PubMed/NCBI | |
Clement EM, Godfrey C, Tan J, et al: Mild POMGnT1 mutations underlie a novel limb-girdle muscular dystrophy variant. Arch Neurol. 65:137–141. 2008. View Article : Google Scholar : PubMed/NCBI | |
Hara Y, Balci-Hayta B, Yoshida-Moriguchi T, et al: A dystroglycan mutation associated with limb-girdle muscular dystrophy. N Engl J Med. 364:939–946. 2011. View Article : Google Scholar : PubMed/NCBI | |
Nigro V, Aurino S and Piluso G: Limb girdle muscular dystrophies: update on genetic diagnosis and therapeutic approaches. Curr Opin Neurol. 24:429–436. 2011. View Article : Google Scholar : PubMed/NCBI | |
Gundesli H, Talim B, Korkusuz P, et al: Mutation in exon 1f of PLEC, leading to disruption of plectin isoform 1f, causes autosomal-recessive limb-girdle muscular dystrophy. Am J Hum Genet. 87:834–841. 2010. View Article : Google Scholar : PubMed/NCBI | |
von Nandelstadh P, Grönholm M, Moza M, Lamberg A, Savilahti H and Carpén O: Actin-organising properties of the muscular dystrophy protein myotilin. Exp Cell Res. 310:131–139. 2005.PubMed/NCBI | |
Maraldi NM, Capanni C, Cenni V, Fini M and Lattanzi G: Laminopathies and lamin-associated signaling pathways. J Cell Biochem. 112:979–992. 2011. View Article : Google Scholar : PubMed/NCBI | |
Gazzerro E, Sotgia F, Bruno C, Lisanti MP and Minetti C: Caveolinopathies: from the biology of caveolin-3 to human diseases. Eur J Hum Genet. 18:137–145. 2010. View Article : Google Scholar : PubMed/NCBI | |
Schröder R and Schoser B: Myofibrillar myopathies: a clinical and myopathological guide. Brain Pathol. 19:483–492. 2009. | |
Ojima K, Ono Y, Ottenheijm C, et al: Non-proteolytic functions of calpain-3 in sarcoplasmic reticulum in skeletal muscles. J Mol Biol. 407:439–449. 2011. View Article : Google Scholar : PubMed/NCBI | |
Ojima K, Kawabata Y, Nakao H, et al: Dynamic distribution of muscle-specific calpain in mice has a key role in physical-stress adaptation and is impaired in muscular dystrophy. J Clin Invest. 120:2672–2683. 2010. View Article : Google Scholar : PubMed/NCBI | |
Bansal D, Miyake K, Vogel SS, et al: Defective membrane repair in dysferlin-deficient muscular dystrophy. Nature. 423:168–172. 2003. View Article : Google Scholar : PubMed/NCBI | |
Chen YW, Zhao P, Borup R and Hoffman EP: Expression profiling in the muscular dystrophies: identification of novel aspects of molecular pathophysiology. J Cell Biol. 151:1321–1336. 2000. View Article : Google Scholar : PubMed/NCBI | |
Zou P, Pinotsis N, Lange S, et al: Palindromic assembly of the giant muscle protein titin in the sarcomeric Z-disk. Nature. 439:229–233. 2006. View Article : Google Scholar | |
Shieh PB, Kudryashova E and Spencer MJ: Limb-girdle muscular dystrophy 2H and the role of TRIM32. Handb Clin Neurol. 101:125–133. 2011. View Article : Google Scholar : PubMed/NCBI | |
Brockington M, Blake DJ, Prandini P, et al: Mutations in the fukutin-related protein gene (FKRP) cause a form of congenital muscular dystrophy with secondary laminin alpha2 deficiency and abnormal glycosylation of alpha-dystroglycan. Am J Hum Genet. 69:1198–1209. 2001. View Article : Google Scholar | |
Isralewitz B, Gao M and Schulten K: Steered molecular dynamics and mechanical functions of proteins. Curr Opin Struct Biol. 11:224–230. 2001. View Article : Google Scholar : PubMed/NCBI | |
Akasaka-Manya K, Manya H, Nakajima A, Kawakita M and Endo T: Physical and functional association of human protein O-mannosyltransferases 1 and 2. J Biol Chem. 281:19339–19345. 2006. View Article : Google Scholar : PubMed/NCBI | |
Yamamoto T, Shibata N, Saito Y, Osawa M and Kobayashi M: Functions of fukutin, a gene responsible for Fukuyama type congenital muscular dystrophy, in neuromuscular system and other somatic organs. Cent Nerv Syst Agents Med Chem. 10:169–179. 2010. View Article : Google Scholar : PubMed/NCBI | |
Yoshida A, Kobayashi K, Manya H, et al: Muscular dystrophy and neuronal migration disorder caused by mutations in a glycosyltransferase, POMGnT1. Dev Cell. 1:717–724. 2001. View Article : Google Scholar : PubMed/NCBI | |
Barresi R and Campbell KP: Dystroglycan: from biosynthesis to pathogenesis of human disease. J Cell Sci. 119:199–207. 2006. View Article : Google Scholar : PubMed/NCBI | |
Moza M, Mologni L, Trokovic R, Faulkner G, Partanen J and Carpén O: Targeted deletion of the muscular dystrophy gene myotilin does not perturb muscle structure or function in mice. Mol Cell Biol. 27:244–252. 2007. View Article : Google Scholar : PubMed/NCBI | |
Garvey SM, Liu Y, Miller SE and Hauser MA: Myotilin overexpression enhances myopathology in the LGMD1A mouse model. Muscle Nerve. 37:663–667. 2008. View Article : Google Scholar : PubMed/NCBI | |
Muchir A, Shan J, Bonne G, Lehnart SE and Worman HJ: Inhibition of extracellular signal-regulated kinase signaling to prevent cardiomyopathy caused by mutation in the gene encoding A-type lamins. Hum Mol Genet. 18:241–247. 2009. View Article : Google Scholar : PubMed/NCBI | |
Kawakami E, Kinouchi N, Adachi T, et al: Atelocollagen-mediated systemic administration of myostatin-targeting siRNA improves muscular atrophy in caveolin-3-deficient mice. Dev Growth Differ. 53:48–54. 2011. View Article : Google Scholar : PubMed/NCBI | |
Bartoli M, Poupiot J, Vulin A, et al: AAV-mediated delivery of a mutated myostatin propeptide ameliorates calpain 3 but not alpha-sarcoglycan deficiency. Gene Ther. 14:733–740. 2007. View Article : Google Scholar : PubMed/NCBI | |
Han R, Frett EM, Levy JR, et al: Genetic ablation of complement C3 attenuates muscle pathology in dysferlin-deficient mice. J Clin Invest. 120:4366–4374. 2010. View Article : Google Scholar : PubMed/NCBI | |
Gallardo E, Rojas-García R, de Luna N, Pou A, Brown RH Jr and Illa I: Inflammation in dysferlin myopathy: immunohistochemical characterization of 13 patients. Neurology. 57:2136–2138. 2001. View Article : Google Scholar : PubMed/NCBI | |
Ohsawa Y, Okada T, Nishimatsu S, et al: An inhibitor of transforming growth factor beta type I receptor ameliorates muscle atrophy in a mouse model of caveolin 3-deficient muscular dystrophy. Lab Invest. 92:1100–1114. 2012. View Article : Google Scholar : PubMed/NCBI | |
Bartoli M, Roudaut C, Martin S, et al: Safety and efficacy of AAV-mediated calpain 3 gene transfer in a mouse model of limb-girdle muscular dystrophy type 2A. Mol Ther. 13:250–259. 2006. View Article : Google Scholar : PubMed/NCBI | |
Albrecht DE, Rufibach LE, Williams BA, Monnier N, Hwang E and Mittal P: 5th Annual Dysferlin Conference; 11–14, July 2011; Chicago, Illinois, USA. Neuromuscul Disord. 22. pp. 471–477. 2012, View Article : Google Scholar | |
Albrecht DE, Garg N, Rufibach LE, et al: 3rd Annual Dysferlin Conference; 2–5 June, 2009; Boston, Massachusetts, USA. Neuromuscul Disord. 19. pp. 867–873. 2009, View Article : Google Scholar | |
Lostal W, Bartoli M, Bourg N, et al: Efficient recovery of dysferlin deficiency by dual adeno-associated vector-mediated gene transfer. Hum Mol Genet. 19:1897–1907. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kong KY, Ren J, Kraus M, Finklestein SP and Brown RH Jr: Human umbilical cord blood cells differentiate into muscle in sjl muscular dystrophy mice. Stem Cells. 22:981–993. 2004. View Article : Google Scholar : PubMed/NCBI | |
Potgieter M, Pretorius E, Van der Merwe CF, et al: Histological assessment of SJL/J mice treated with the antioxidants coenzyme Q10 and resveratrol. Micron. 42:275–282. 2011. View Article : Google Scholar : PubMed/NCBI | |
Cordier L, Hack AA, Scott MO, et al: Rescue of skeletal muscles of gamma-sarcoglycan-deficient mice with adeno-associated virus-mediated gene transfer. Mol Ther. 1:119–129. 2000. View Article : Google Scholar : PubMed/NCBI | |
Bogdanovich S, McNally EM and Khurana TS: Myostatin blockade improves function but not histopathology in a murine model of limb-girdle muscular dystrophy 2C. Muscle Nerve. 37:308–316. 2008. View Article : Google Scholar : PubMed/NCBI | |
Allikian MJ, Hack AA, Mewborn S, Mayer U and McNally EM: Genetic compensation for sarcoglycan loss by integrin alpha7beta1 in muscle. J Cell Sci. 117:3821–3830. 2004. View Article : Google Scholar : PubMed/NCBI | |
Allamand V, Donahue KM, Straub V, Davisson RL, Davidson BL and Campbell KP: Early adenovirus-mediated gene transfer effectively prevents muscular dystrophy in alpha-sarcoglycan-deficient mice. Gene Ther. 7:1385–1391. 2000. View Article : Google Scholar : PubMed/NCBI | |
Galvez BG, Sampaolesi M, Brunelli S, et al: Complete repair of dystrophic skeletal muscle by mesoangioblasts with enhanced migration ability. J Cell Biol. 174:231–243. 2006. View Article : Google Scholar : PubMed/NCBI | |
Minetti GC, Colussi C, Adami R, et al: Functional and morphological recovery of dystrophic muscles in mice treated with deacetylase inhibitors. Nat Med. 12:1147–1150. 2006. View Article : Google Scholar : PubMed/NCBI | |
Dressman D, Araishi K, Imamura M, et al: Delivery of alpha- and beta-sarcoglycan by recombinant adeno-associated virus: efficient rescue of muscle, but differential toxicity. Hum Gene Ther. 13:1631–1646. 2002. View Article : Google Scholar : PubMed/NCBI | |
Hoshijima M, Hayashi T, Jeon YE, et al: Delta-sarcoglycan gene therapy halts progression of cardiac dysfunction, improves respiratory failure, and prolongs life in myopathic hamsters. Circ Heart Fail. 4:89–97. 2011. View Article : Google Scholar : PubMed/NCBI | |
Iwata Y, Katanosaka Y, Shijun Z, et al: Protective effects of Ca2+ handling drugs against abnormal Ca2+ homeostasis and cell damage in myopathic skeletal muscle cells. Biochem Pharmacol. 70:740–751. 2005. | |
Zhu T, Zhou L, Mori S, et al: Sustained whole-body functional rescue in congestive heart failure and muscular dystrophy hamsters by systemic gene transfer. Circulation. 112:2650–2659. 2005. View Article : Google Scholar : PubMed/NCBI | |
Henning RJ, Aufman J, Shariff M, et al: Human umbilical cord blood mononuclear cells decrease fibrosis and increase cardiac function in cardiomyopathy. Regen Med. 5:45–54. 2010. View Article : Google Scholar : PubMed/NCBI | |
Lapidos KA, Chen YE, Earley JU, et al: Transplanted hematopoietic stem cells demonstrate impaired sarcoglycan expression after engraftment into cardiac and skeletal muscle. J Clin Invest. 114:1577–1585. 2004. View Article : Google Scholar | |
Nomura T, Ashihara E, Tateishi K, et al: Skeletal myosphere-derived progenitor cell transplantation promotes neovascularization in delta-sarcoglycan knockdown cardiomyopathy. Biochem Biophys Res Commun. 352:668–674. 2007. View Article : Google Scholar | |
Parsons SA, Millay DP, Sargent MA, McNally EM and Molkentin JD: Age-dependent effect of myostatin blockade on disease severity in a murine model of limb-girdle muscular dystrophy. Am J Pathol. 168:1975–1985. 2006. View Article : Google Scholar : PubMed/NCBI | |
Goehringer C, Rutschow D, Bauer R, et al: Prevention of cardiomyopathy in delta-sarcoglycan knockout mice after systemic transfer of targeted adeno-associated viral vectors. Cardiovasc Res. 82:404–410. 2009. View Article : Google Scholar : PubMed/NCBI | |
Charton K, Danièle N, Vihola A, et al: Removal of the calpain 3 protease reverses the myopathology in a mouse model for titinopathies. Hum Mol Genet. 19:4608–4624. 2010. View Article : Google Scholar : PubMed/NCBI | |
Barresi R, Michele DE, Kanagawa M, et al: LARGE can functionally bypass alpha-dystroglycan glycosylation defects in distinct congenital muscular dystrophies. Nat Med. 10:696–703. 2004. View Article : Google Scholar : PubMed/NCBI | |
Straub V, Donahue KM, Allamand V, Davisson RL, Kim YR and Campbell KP: Contrast agent-enhanced magnetic resonance imaging of skeletal muscle damage in animal models of muscular dystrophy. Magn Reson Med. 44:655–659. 2000. View Article : Google Scholar : PubMed/NCBI | |
Bartoli M, Poupiot J, Goyenvalle A, et al: Noninvasive monitoring of therapeutic gene transfer in animal models of muscular dystrophies. Gene Ther. 13:20–28. 2006. View Article : Google Scholar : PubMed/NCBI | |
Mendell JR, Rodino-Klapac LR, Rosales XQ, et al: Sustained alpha-sarcoglycan gene expression after gene transfer in limb-girdle muscular dystrophy, type 2D. Ann Neurol. 68:629–638. 2010. View Article : Google Scholar : PubMed/NCBI | |
Norwood FL, Harling C, Chinnery PF, Eagle M, Bushby K and Straub V: Prevalence of genetic muscle disease in Northern England: in-depth analysis of a muscle clinic population. Brain. 132:3175–3186. 2009. View Article : Google Scholar : PubMed/NCBI | |
Gómez-Díaz B, Rosas-Vargas H, Roque-Ramírez B, et al: Immunodetection analysis of muscular dystrophies in Mexico. Muscle Nerve. 45:338–345. 2012.PubMed/NCBI | |
Diniz G, Eryaşar G, Türe S, et al: A regional panorama of dysferlinopathies. Turk Patoloji Derg. 28:259–265. 2012.PubMed/NCBI | |
Magri F, Bo RD, D’Angelo MG, et al: Frequency and characterisation of anoctamin 5 mutations in a cohort of Italian limb-girdle muscular dystrophy patients. Neuromuscul Disord. 22:934–943. 2012. View Article : Google Scholar : PubMed/NCBI | |
Guglieri M, Magri F, D’Angelo MG, et al: Clinical, molecular, and protein correlations in a large sample of genetically diagnosed Italian limb girdle muscular dystrophy patients. Hum Mutat. 29:258–266. 2008. View Article : Google Scholar : PubMed/NCBI | |
Fanin M, Nascimbeni AC, Aurino S, et al: Frequency of LGMD gene mutations in Italian patients with distinct clinical phenotypes. Neurology. 72:1432–1435. 2009. View Article : Google Scholar : PubMed/NCBI | |
Urtasun M, Sáenz A, Roudaut C, et al: Limb-girdle muscular dystrophy in Guipúzcoa (Basque Country, Spain). Brain. 121:1735–1747. 1998. | |
Walter MC, Petersen JA, Stucka R, et al: FKRP (826C>A) frequently causes limb-girdle muscular dystrophy in German patients. J Med Genet. 41:e502004. | |
Hicks D, Sarkozy A, Muelas N, et al: A founder mutation in Anoctamin 5 is a major cause of limb-girdle muscular dystrophy. Brain. 134:171–182. 2011. View Article : Google Scholar : PubMed/NCBI | |
Stensland E, Lindal S, Jonsrud C, et al: Prevalence, mutation spectrum and phenotypic variability in Norwegian patients with Limb Girdle Muscular Dystrophy 2I. Neuromuscul Disord. 21:41–46. 2011. View Article : Google Scholar : PubMed/NCBI | |
Sveen ML, Schwartz M and Vissing J: High prevalence and phenotype-genotype correlations of limb girdle muscular dystrophy type 2I in Denmark. Ann Neurol. 59:808–815. 2006. View Article : Google Scholar : PubMed/NCBI | |
Penttila S, Palmio J, Suominen T, et al: Eight new mutations and the expanding phenotype variability in muscular dystrophy caused by ANO5. Neurology. 78:897–903. 2012. View Article : Google Scholar : PubMed/NCBI | |
Lo HP, Cooper ST, Evesson FJ, et al: Limb-girdle muscular dystrophy: diagnostic evaluation, frequency and clues to pathogenesis. Neuromuscul Disord. 18:34–44. 2008. View Article : Google Scholar : PubMed/NCBI | |
Moore SA, Shilling CJ, Westra S, et al: Limb-girdle muscular dystrophy in the United States. J Neuropathol Exp Neurol. 65:995–1003. 2006. View Article : Google Scholar : PubMed/NCBI | |
Dinçer PP, Leturcq F, Richard I, et al: A biochemical, genetic, and clinical survey of autosomal recessive limb girdle muscular dystrophies in Turkey. Ann Neurol. 42:222–229. 1997.PubMed/NCBI | |
Pogoda TV, Krakhmaleva IN, Lipatova NA, Shakhovskaya NI, Shishkin SS and Limborska SA: High incidence of 550delA mutation of CAPN3 in LGMD2 patients from Russia. Hum Mutat. 15:2952000. View Article : Google Scholar : PubMed/NCBI | |
Zatz M, de Paula F, Starling A and Vainzof M: The 10 autosomal recessive limb-girdle muscular dystrophies. Neuromuscul Disord. 13:532–544. 2003. View Article : Google Scholar : PubMed/NCBI | |
Chae J, Minami N, Jin Y, et al: Calpain 3 gene mutations: genetic and clinico-pathologic findings in limb-girdle muscular dystrophy. Neuromuscul Disord. 11:547–555. 2001. View Article : Google Scholar : PubMed/NCBI | |
Hayashi S, Ohsawa Y, Takahashi T, et al: Rapid screening for Japanese dysferlinopathy by fluorescent primer extension. Intern Med. 49:2693–2696. 2010. View Article : Google Scholar : PubMed/NCBI | |
Meena AK, Sreenivas D, Sundaram C, et al: Sarcoglycanopathies: a clinico-pathological study. Neurol India. 55:117–121. 2007. View Article : Google Scholar : PubMed/NCBI | |
Pathak P, Sharma MC, Sarkar C, et al: Limb girdle muscular dystrophy type 2A in India: a study based on semi-quantitative protein analysis, with clinical and histopathological correlation. Neurol India. 58:549–554. 2010. View Article : Google Scholar : PubMed/NCBI | |
Gayathri N, Alefia R, Nalini A, et al: Dysferlinopathy: spectrum of pathological changes in skeletal muscle tissue. Indian J Pathol Microbiol. 54:350–354. 2011. View Article : Google Scholar : PubMed/NCBI | |
Hadj Salem I, Kamoun F, Louhichi N, Trigui M, Triki C and Fakhfakh F: Impact of single-nucleotide polymorphisms at the TP53-binding and responsive promoter region of BCL2 gene in modulating the phenotypic variability of LGMD2C patients. Mol Biol Rep. 39:7479–7486. 2012.PubMed/NCBI | |
Sinnreich M, Therrien C and Karpati G: Lariat branch point mutation in the dysferlin gene with mild limb-girdle muscular dystrophy. Neurology. 66:1114–1116. 2006. View Article : Google Scholar : PubMed/NCBI | |
Tagawa K, Ogawa M, Kawabe K, et al: Protein and gene analyses of dysferlinopathy in a large group of Japanese muscular dystrophy patients. J Neurol Sci. 211:23–28. 2003. View Article : Google Scholar : PubMed/NCBI | |
Takahashi T, Aoki M, Tateyama M, et al: Dysferlin mutations in Japanese Miyoshi myopathy: relationship to phenotype. Neurology. 60:1799–1804. 2003. View Article : Google Scholar : PubMed/NCBI | |
Nagashima T, Chuma T, Mano Y, et al: Dysferlinopathy associated with rigid spine syndrome. Neuropathology. 24:341–346. 2004. View Article : Google Scholar | |
Saccone V, Palmieri M, Passamano L, et al: Mutations that impair interaction properties of TRIM32 associated with limb-girdle muscular dystrophy 2H. Hum Mutat. 29:240–247. 2008. View Article : Google Scholar : PubMed/NCBI | |
Kondo-lida E, Kobayashi K, Watanabe M, et al: Novel mutations and genotype-phenotype relationships in 107 families with Fukuyama-type congenital muscular dystrophy (FCMD). Hum Mol Genet. 8:2303–2309. 1999. View Article : Google Scholar : PubMed/NCBI | |
Scharner J, Gnocchi VF, Ellis JA and Zammit PS: Genotype-phenotype correlations in laminopathies: how does fate translate? Biochem Soc Trans. 38:257–262. 2010. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Ye J, Chen D, et al: Differential expression profiling between the relative normal and dystrophic muscle tissues from the same LGMD patient. J Transl Med. 4:532006. View Article : Google Scholar : PubMed/NCBI | |
Godfrey C, Clement E, Mein R, et al: Refining genotype phenotype correlations in muscular dystrophies with defective glycosylation of dystroglycan. Brain. 130:2725–2735. 2007. View Article : Google Scholar : PubMed/NCBI | |
Klinge L, Dean AF, Kress W, et al: Late onset in dysferlinopathy widens the clinical spectrum. Neuromuscul Disord. 18:288–290. 2008. View Article : Google Scholar : PubMed/NCBI | |
Rosales XQ, Gastier-Foster JM, Lewis S, et al: Novel diagnostic features of dysferlinopathies. Muscle Nerve. 42:14–21. 2010. View Article : Google Scholar : PubMed/NCBI | |
Broglio L, Tentorio M, Cotelli MS, et al: Limb-girdle muscular dystrophy-associated protein diseases. Neurologist. 16:340–352. 2010. View Article : Google Scholar : PubMed/NCBI | |
Mercuri E, Brockington M, Straub V, et al: Phenotypic spectrum associated with mutations in the fukutin-related protein gene. Ann Neurol. 53:537–542. 2003. View Article : Google Scholar : PubMed/NCBI | |
Gáti I, Danielsson O, Gunnarsson C, et al: Bent spine syndrome: a phenotype of dysferlinopathy or a symptomatic DYSF gene mutation carrier. Eur Neurol. 67:300–302. 2012.PubMed/NCBI | |
Hermans MC, Pinto YM, Merkies IS, de Die-Smulders CE, Crijns HJ and Faber CG: Hereditary muscular dystrophies and the heart. Neuromuscul Disord. 20:479–492. 2010. View Article : Google Scholar : PubMed/NCBI | |
Filosto M, Tonin P, Vattemi G, et al: Chronic ophthalmoparesis in limb girdle muscular dystrophy 1C. J Neurol Neurosurg Psychiatry. 80:448–449. 2009. View Article : Google Scholar : PubMed/NCBI | |
Selcen D: Myofibrillar myopathies. Neuromuscul Disord. 21:161–171. 2011. View Article : Google Scholar : PubMed/NCBI | |
Palmieri A, Manara R, Bello L, et al: Cognitive profile and MRI findings in limb-girdle muscular dystrophy 2I. J Neurol. 258:1312–1320. 2011. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Huang JJ, Wang ZQ, Wang N and Wu ZY: Value of muscle enzyme measurement in evaluating different neuromuscular diseases. Clin Chim Acta. 413:520–524. 2012. View Article : Google Scholar : PubMed/NCBI | |
Wattjes MP, Kley RA and Fischer D: Neuromuscular imaging in inherited muscle diseases. Eur Radiol. 20:2447–2460. 2010. View Article : Google Scholar : PubMed/NCBI | |
Fischer D, Walter MC, Kesper K, et al: Diagnostic value of muscle MRI in differentiating LGMD2I from other LGMDs. J Neurol. 252:538–547. 2005. View Article : Google Scholar : PubMed/NCBI | |
Fischer D, Kley RA, Strach K, et al: Distinct muscle imaging patterns in myofibrillar myopathies. Neurology. 71:758–765. 2008. View Article : Google Scholar : PubMed/NCBI | |
Starling A, de Paula F, Silva H, Vainzof M and Zatz M: Calpainopathy: how broad is the spectrum of clinical variability? J Mol Neurosci. 21:233–236. 2003. View Article : Google Scholar : PubMed/NCBI | |
Santoro L, Nolano M, Faraso S, et al: Perioral skin biopsy to study skeletal muscle protein expression. Muscle Nerve. 41:392–398. 2010. View Article : Google Scholar : PubMed/NCBI | |
Nagaraju K, Rawat R, Veszelovszky E, et al: Dysferlin deficiency enhances monocyte phagocytosis: a model for the inflammatory onset of limb-girdle muscular dystrophy 2B. Am J Pathol. 172:774–785. 2008. View Article : Google Scholar : PubMed/NCBI | |
Brown RH Jr and Amato A: Calpainopathy and eosinophilic myositis. Ann Neurol. 59:875–877. 2006. View Article : Google Scholar : PubMed/NCBI | |
Baumeister SK, Todorovic S, Milić-Rasić V, Dekomien G, Lochmüller H and Walter MC: Eosinophilic myositis as presenting symptom in gamma-sarcoglycanopathy. Neuromuscul Disord. 19:167–171. 2009. View Article : Google Scholar : PubMed/NCBI | |
Vinit J, Samson M Jr, Gaultier JB, et al: Dysferlin deficiency treated like refractory polymyositis. Clin Rheumatol. 29:103–106. 2010. View Article : Google Scholar : PubMed/NCBI | |
Claeys KG, Fardeau M, Schröder R, et al: Electron microscopy in myofibrillar myopathies reveals clues to the mutated gene. Neuromuscul Disord. 18:656–666. 2008. View Article : Google Scholar : PubMed/NCBI | |
Cacciottolo M, Numitone G, Aurino S, et al: Muscular dystrophy with marked Dysferlin deficiency is consistently caused by primary dysferlin gene mutations. Eur J Hum Genet. 19:974–980. 2011. View Article : Google Scholar : PubMed/NCBI | |
Trabelsi M, Kavian N, Daoud F, et al: Revised spectrum of mutations in sarcoglycanopathies. Eur J Hum Genet. 16:793–803. 2008. View Article : Google Scholar : PubMed/NCBI | |
Herrmann R, Straub V, Blank M, et al: Dissociation of the dystroglycan complex in caveolin-3-deficient limb girdle muscular dystrophy. Hum Mol Genet. 9:2335–2340. 2000. View Article : Google Scholar : PubMed/NCBI | |
Vainzof M, Moreira ES, Suzuki OT, et al: Telethonin protein expression in neuromuscular disorders. Biochim Biophys Acta. 1588:33–40. 2002. View Article : Google Scholar : PubMed/NCBI | |
Charlton R, Henderson M, Richards J, et al: Immunohistochemical analysis of calpain 3: advantages and limitations in diagnosing LGMD2A. Neuromuscul Disord. 19:449–457. 2009. View Article : Google Scholar : PubMed/NCBI | |
Fanin M, Nascimbeni AC, Fulizio L, Trevisan CP, Meznaric-Petrusa M and Angelini C: Loss of calpain-3 autocatalytic activity in LGMD2A patients with normal protein expression. Am J Pathol. 163:1929–1936. 2003. View Article : Google Scholar : PubMed/NCBI | |
Fanin M, Nascimbeni AC, Tasca E and Angelini C: How to tackle the diagnosis of limb-girdle muscular dystrophy 2A. Eur J Hum Genet. 17:598–603. 2009. View Article : Google Scholar : PubMed/NCBI | |
Sáenz A, Leturcq F, Cobo AM, et al: LGMD2A: genotype-phenotype correlations based on a large mutational survey on the calpain 3 gene. Brain. 128:732–742. 2005.PubMed/NCBI | |
Groen EJ, Charlton R, Barresi R, et al: Analysis of the UK diagnostic strategy for limb girdle muscular dystrophy 2A. Brain. 130:3237–3249. 2007. View Article : Google Scholar : PubMed/NCBI | |
Fanin M, Fulizio L, Nascimbeni AC, et al: Molecular diagnosis in LGMD2A: mutation analysis or protein testing? Hum Mutat. 24:52–62. 2004. View Article : Google Scholar : PubMed/NCBI | |
Hackman P, Vihola A, Haravuori H, et al: Tibial muscular dystrophy is a titinopathy caused by mutations in TTN, the gene encoding the giant skeletal-muscle protein titin. Am J Hum Genet. 71:492–500. 2002. View Article : Google Scholar : PubMed/NCBI | |
Borg K, Stucka R, Locke M, et al: Intragenic deletion of TRIM32 in compound heterozygotes with sarcotubular myopathy/LGMD2H. Hum Mutat. 30:E831–844. 2009. View Article : Google Scholar : PubMed/NCBI | |
Sewry CA: Muscular dystrophies: an update on pathology and diagnosis. Acta Neuropathol. 120:343–358. 2010. View Article : Google Scholar : PubMed/NCBI | |
Ho M, Gallardo E, McKenna-Yasek D, De Luna N, Illa I and Brown RH Jr: A novel, blood-based diagnostic assay for limb girdle muscular dystrophy 2B and Miyoshi myopathy. Ann Neurol. 51:129–133. 2002. View Article : Google Scholar : PubMed/NCBI | |
Escher C, Lochmüller H, Fischer D, et al: Reverse protein arrays as novel approach for protein quantification in muscular dystrophies. Neuromuscul Disord. 20:302–309. 2010. View Article : Google Scholar : PubMed/NCBI | |
Blázquez L, Azpitarte M, Sáenz A, et al: Characterization of novel CAPN3 isoforms in white blood cells: an alternative approach for limb-girdle muscular dystrophy 2A diagnosis. Neurogenetics. 9:173–182. 2008.PubMed/NCBI | |
De Luna N, Freixas A, Gallano P, et al: Dysferlin expression in monocytes: a source of mRNA for mutation analysis. Neuromuscul Disord. 17:69–76. 2007.PubMed/NCBI | |
Teer JK and Mullikin JC: Exome sequencing: the sweet spot before whole genomes. Hum Mol Genet. 19:R145–151. 2010. View Article : Google Scholar : PubMed/NCBI | |
Balci B, Aurino S, Haliloglu G, et al: Calpain-3 mutations in Turkey. Eur J Pediatr. 165:293–298. 2006. View Article : Google Scholar : PubMed/NCBI | |
Fanin M, Nascimbeni AC, Fulizio L and Angelini C: The frequency of limb girdle muscular dystrophy 2A in northeastern Italy. Neuromuscul Disord. 15:218–224. 2005. View Article : Google Scholar : PubMed/NCBI | |
Takahashi T, Aoki M, Suzuki N, et al: Clinical features and a mutation with late onset of limb girdle muscular dystrophy 2B. J Neurol Neurosurg Psychiatry. 84:433–440. 2012. View Article : Google Scholar : PubMed/NCBI | |
Park YE, Kim HS, Lee CH, Nam TS, Choi YC and Kim DS: Two common mutations (p.Gln832X and c.663+1G>C) account for about a third of the DYSF mutations in Korean patients with dysferlinopathy. Neuromuscul Disord. 22:505–510. 2012.PubMed/NCBI | |
Barthélémy F, Wein N, Krahn M, Lévy N and Bartoli M: Translational research and therapeutic perspectives in dysferlinopathies. Mol Med. 17:875–882. 2011.PubMed/NCBI | |
Hackman P, Juvonen V, Sarparanta J, et al: Enrichment of the R77C alpha-sarcoglycan gene mutation in Finnish LGMD2D patients. Muscle Nerve. 31:199–204. 2005. View Article : Google Scholar : PubMed/NCBI | |
Schoser BG, Frosk P, Engel AG, Klutzny U, Lochmüller H and Wrogemann K: Commonality of TRIM32 mutation in causing sarcotubular myopathy and LGMD2H. Ann Neurol. 57:591–595. 2005. View Article : Google Scholar : PubMed/NCBI | |
Kang PB, Feener CA, Estrella E, et al: LGMD2I in a North American population. BMC Musculoskelet Disord. 8:1152007. View Article : Google Scholar : PubMed/NCBI | |
Norwood F, de Visser M, Eymard B, Lochmüller H and Bushby K: EFNS guideline on diagnosis and management of limb girdle muscular dystrophies. Eur J Neurol. 14:1305–1312. 2007. View Article : Google Scholar : PubMed/NCBI | |
Eagle M: Report on the muscular dystrophy campaign workshop: exercise in neuromuscular diseases; Newcastle. January 2002; Neuromuscul Disord. 12. pp. 975–983. 2002, View Article : Google Scholar | |
Miladi N, Bourguignon JP and Hentati F: Cognitive and psychological profile of a Tunisian population of limb girdle muscular dystrophy. Neuromuscul Disord. 9:352–354. 1999. View Article : Google Scholar : PubMed/NCBI | |
Wagner KR, Fleckenstein JL, Amato AA, et al: A phase I/II trial of MYO-029 in adult subjects with muscular dystrophy. Ann Neurol. 63:561–571. 2008. View Article : Google Scholar : PubMed/NCBI | |
Lerario A, Cogiamanian F, Marchesi C, et al: Effects of rituximab in two patients with dysferlin-deficient muscular dystrophy. BMC Musculoskelet Disord. 11:1572010. View Article : Google Scholar : PubMed/NCBI | |
Hattori H, Nagata E, Oya Y, et al: A novel compound heterozygous dysferlin mutation in Miyoshi myopathy siblings responding to dantrolene. Eur J Neurol. 14:1288–1291. 2007. View Article : Google Scholar : PubMed/NCBI | |
Luna ND, Díaz-Manera J, Paradas C, et al: 1α,25(OH)(2)-Vitamin D3 increases dysferlin expression in vitro and in a human clinical trial. Mol Ther. 20:1988–1997. 2012. | |
Walter MC, Reilich P, Thiele S, et al: Treatment of dysferlinopathy with deflazacort: a double-blind, placebo-controlled clinical trial. Orphanet J Rare Dis. 8:262013. View Article : Google Scholar : PubMed/NCBI | |
Angelini C, Fanin M, Menegazzo E, Freda MP, Duggan DJ and Hoffman EP: Homozygous alpha-sarcoglycan mutation in two siblings: one asymptomatic and one steroid-responsive mild limb-girdle muscular dystrophy patient. Muscle Nerve. 21:769–775. 1998. View Article : Google Scholar : PubMed/NCBI | |
Darin N, Kroksmark AK, Ahlander AC, Moslemi AR, Oldfors A and Tulinius M: Inflammation and response to steroid treatment in limb-girdle muscular dystrophy 2I. Eur J Paediatr Neurol. 11:353–357. 2007. View Article : Google Scholar : PubMed/NCBI | |
Walter MC, Lochmüller H, Reilich P, et al: Creatine monohydrate in muscular dystrophies: A double-blind, placebo-controlled clinical study. Neurology. 54:1848–1850. 2000. View Article : Google Scholar : PubMed/NCBI |