1
|
Granger J and Remick D: Acute
pancreatitis: models, markers, and mediators. Shock. 24(Suppl 1):
45–51. 2005. View Article : Google Scholar : PubMed/NCBI
|
2
|
Berezina TL, Zaets SB, Mole DJ, Spolarics
Z, Deitch EA and Machiedo GW: Mesenteric lymph duct ligation
decreases red blood cell alterations caused by acute pancreatitis.
Am J Surg. 190:800–804. 2005. View Article : Google Scholar : PubMed/NCBI
|
3
|
Carvalho PH, Daibert AP, Monteiro BS, et
al: Differentiation of adipose tissue-derived mesenchymal stem
cells into cardiomyocytes. Arq Bras Cardiol. 100:82–89.
2013.PubMed/NCBI
|
4
|
Pankajakshan D, Kansal V and Agrawal DK:
In vitro differentiation of bone marrow derived porcine mesenchymal
stem cells to endothelial cells; J Tissue Eng Regen Med. May
18–2012.(Epub ahead of print).
|
5
|
Phuc PV, Nhung TH, Loan DT, Chung DC and
Ngoc PK: Differentiating of banked human umbilical cord
blood-derived mesenchymal stem cells into insulin-secreting cells.
In Vitro Cell Dev Biol Anim; 47:54–63. 2011.PubMed/NCBI
|
6
|
Tu XH, Song JX, Xue XJ, et al: Role of
bone marrow-derived mesenchymal stem cells in a rat model of severe
acute pancreatitis. World J Gastroenterol. 18:2270–2279. 2012.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Jung KH, Song SU, Yi T, et al: Human bone
marrow-derived clonal mesenchymal stem cells inhibit inflammation
and reduce acute pancreatitis in rats. Gastroenterology.
140:998–1008. 2011. View Article : Google Scholar : PubMed/NCBI
|
8
|
Yang B, Bai B, Liu CX, et al: Effect of
umbilical cord mesenchymal stem cells on treatment of severe acute
pancreatitis in rats. Cytotherapy. 15:154–162. 2013. View Article : Google Scholar : PubMed/NCBI
|
9
|
McIver SC, Loveland KL, Roman SD, Nixon B,
Kitazawa R and McLaughlin EA: The chemokine CXCL12 and its receptor
CXCR4 are implicated in human seminoma metastasis. Andrology.
1:517–529. 2013. View Article : Google Scholar : PubMed/NCBI
|
10
|
Mukherjee D and Zhao J: The role of
chemokine receptor CXCR4 in breast cancer metastasis. Am J Cancer
Res. 3:46–57. 2013.PubMed/NCBI
|
11
|
Du L, Yang P and Ge S: Stromal
cell-derived factor-1 significantly induces proliferation,
migration, and collagen type I expression in a human periodontal
ligament stem cell subpopulation. J Periodontol. 83:379–388. 2012.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Theiss HD, Vallaster M, Rischpler C, et
al: Dual stem cell therapy after myocardial infarction acts
specifically by enhanced homing via the SDF-1/CXCR4 axis. Stem Cell
Res. 7:244–255. 2011. View Article : Google Scholar : PubMed/NCBI
|
13
|
Yu J, Li M, Qu Z, Yan D, Li D and Ruan Q:
SDF-1/CXCR4-mediated migration of transplanted bone marrow stromal
cells toward areas of heart myocardial infarction through
activation of PI3K/Akt. J Cardiovasc Pharmacol. 55:496–505.
2010.PubMed/NCBI
|
14
|
Shen LH, Li Y, Chen J, et al: Therapeutic
benefit of bone marrow stromal cells administered 1 month after
stroke. J Cereb Blood Flow Metab. 27:6–13. 2007. View Article : Google Scholar : PubMed/NCBI
|
15
|
Togel F, Isaac J, Hu Z, Weiss K and
Westenfelder C: Renal SDF-1 signals mobilization and homing of
CXCR4-positive cells to the kidney after ischemic injury. Kidney
Int. 67:1772–1784. 2005. View Article : Google Scholar : PubMed/NCBI
|
16
|
Perides G, van Acker GJ, Laukkarinen JM
and Steer ML: Experimental acute biliary pancreatitis induced by
retrograde infusion of bile acids into the mouse pancreatic duct.
Nat Protoc. 5:335–341. 2010. View Article : Google Scholar : PubMed/NCBI
|
17
|
Weir C, Morel-Kopp MC, Gill A, Tinworth K,
Ladd L, Hunyor N and Ward C: Mesenchymal stem cells: isolation,
characterisation and in vivo fluorescent dye tracking. Heart Lung
Circ. 17:395–403. 2008. View Article : Google Scholar : PubMed/NCBI
|
18
|
Wittel UA, Wiech T, Chakraborty S, et al:
Taurocholate-induced pancreatitis: a model of severe necrotizing
pancreatitis in mice. Pancreas. 36:e9–e21. 2008. View Article : Google Scholar : PubMed/NCBI
|
19
|
Kemp KC, Hows J and Donaldson C: Bone
marrow-derived mesenchymal stem cells. Leuk Lymphoma. 46:1531–1544.
2005. View Article : Google Scholar : PubMed/NCBI
|
20
|
Lin RZ, Moreno-Luna R, Zhou B, Pu WT and
Melero-Martin JM: Equal modulation of endothelial cell function by
four distinct tissue-specific mesenchymal stem cells. Angiogenesis.
15:443–455. 2012. View Article : Google Scholar : PubMed/NCBI
|
21
|
Dominici M, Le Blanc K, Mueller I, et al:
Minimal criteria for defining multipotent mesenchymal stromal
cells. The International Society for Cellular Therapy position
statement. Cytotherapy. 8:315–317. 2006. View Article : Google Scholar
|
22
|
Li M, Yu J, Li Y, et al: CXCR4 positive
bone mesenchymal stem cells migrate to human endothelial cell
stimulated by ox-LDL via SDF-1alpha/CXCR4 signaling axis. Exp Mol
Pathol. 88:250–255. 2010. View Article : Google Scholar : PubMed/NCBI
|
23
|
Yu L, Cecil J, Peng SB, et al:
Identification and expression of novel isoforms of human stromal
cell-derived factor 1. Gene. 374:174–179. 2006. View Article : Google Scholar : PubMed/NCBI
|
24
|
Toksoy A, Müller V, Gillitzer R and
Goebeler M: Biphasic expression of stromal cell-derived factor-1
during human wound healing. Br J Dermatol. 157:1148–1154. 2007.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Ceradini DJ, Kulkarni AR, Callaghan MJ, et
al: Progenitor cell trafficking is regulated by hypoxic gradients
through HIF-1 induction of SDF-1. Nat Med. 10:858–864. 2004.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Lerman OZ, Greives MR, Singh SP, et al:
Low-dose radiation augments vasculogenesis signaling through
HIF-1-dependent and -independent SDF-1 induction. Blood.
116:3669–3676. 2010. View Article : Google Scholar : PubMed/NCBI
|
27
|
Ryu CH, Park SA, Kim SM, et al: Migration
of human umbilical cord blood mesenchymal stem cells mediated by
stromal cell-derived factor-1/CXCR4 axis via Akt, ERK, and p38
signal transduction pathways. Biochem Biophys Res Commun.
398:105–110. 2010. View Article : Google Scholar : PubMed/NCBI
|
28
|
Xu X, Zhu F, Zhang M, et al: Stromal
cell-derived factor-1 enhances wound healing through recruiting
bone marrow-derived mesenchymal stem cells to the wound area and
promoting neovascularization. Cells Tissues Organs. 197:103–113.
2013. View Article : Google Scholar
|
29
|
Kitaori T, Ito H, Schwarz EM, et al:
Stromal cell-derived factor 1/CXCR4 signaling is critical for the
recruitment of mesenchymal stem cells to the fracture site during
skeletal repair in a mouse model. Arthritis Rheum. 60:813–823.
2009. View Article : Google Scholar : PubMed/NCBI
|
30
|
Wang Y, Deng Y and Zhou GQ:
SDF-1alpha/CXCR4-mediated migration of systemically transplanted
bone marrow stromal cells towards ischemic brain lesion in a rat
model. Brain Res. 1195:104–112. 2008. View Article : Google Scholar : PubMed/NCBI
|
31
|
Miller RJ, Banisadr G and Bhattacharyya
BJ: CXCR4 signaling in the regulation of stem cell migration and
development. J Neuroimmunol. 198:31–38. 2008. View Article : Google Scholar : PubMed/NCBI
|
32
|
Kucia M, Reca R, Miekus K, et al:
Trafficking of normal stem cells and metastasis of cancer stem
cells involve similar mechanisms: pivotal role of the SDF-1-CXCR4
axis. Stem Cells. 23:879–894. 2005. View Article : Google Scholar : PubMed/NCBI
|
33
|
Xu F, Shi J, Yu B, Ni W, Wu X and Gu Z:
Chemokines mediate mesenchymal stem cell migration toward gliomas
in vitro. Oncol Rep. 23:1561–1567. 2010.PubMed/NCBI
|
34
|
Vogel S, Peters C, Etminan N, et al:
Migration of mesenchymal stem cells towards glioblastoma cells
depends on hepatocyte-growth factor and is enhanced by
aminolaevulinic acid-mediated photodynamic treatment. Biochem
Biophys Res Commun. 431:428–432. 2013. View Article : Google Scholar
|
35
|
Xiao Q, Wang SK, Tian H, et al: TNF-alpha
increases bone marrow mesenchymal stem cell migration to ischemic
tissues. Cell Biochem Biophys. 62:409–414. 2012. View Article : Google Scholar : PubMed/NCBI
|
36
|
Kitamura T, Asanuma N, Inaba M, et al:
Regeneration of tubular complex is promoted by a free space.
Pancreas. 30:174–179. 2005. View Article : Google Scholar : PubMed/NCBI
|