1
|
Humbert M, Sitbon O and Simonneau G:
Treatment of pulmonary arterial hypertension. N Engl J Med.
351:1425–1436. 2004. View Article : Google Scholar : PubMed/NCBI
|
2
|
Sakao S, Tatsumi K and Voelkel NF:
Reversible or irreversible remodeling in pulmonary arterial
hypertension. Am J Respir Cell Mol Biol. 43:629–634. 2010.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Agbani EO, Coats P, Mills A and Wadsworth
RM: Peroxynitrite stimulates pulmonary artery endothelial and
smooth muscle cell proliferation: involvement of ERK and PKC. Pulm
Pharmacol Ther. 24:100–109. 2011. View Article : Google Scholar : PubMed/NCBI
|
4
|
Luo C, Yi B, Bai L, et al: Suppression of
Akt1 phosphorylation by adenoviral transfer of the PTEN gene
inhibits hypoxia-induced proliferation of rat pulmonary arterial
smooth muscle cells. Biochem Biophys Res Commun. 397:486–492. 2010.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Giese NA, Marijianowski MM, McCook O, et
al: The role of alpha and beta platelet-derived growth factor
receptor in the vascular response to injury in nonhuman primates.
Arterioscler Thromb Vasc Biol. 19:900–909. 1999. View Article : Google Scholar : PubMed/NCBI
|
6
|
Perros F, Montani D, Dorfmüller P, et al:
Platelet-derived growth factor expression and function in
idiopathic pulmonary arterial hypertension. Am J Respir Crit Care
Med. 178:81–88. 2008. View Article : Google Scholar : PubMed/NCBI
|
7
|
Ogawa A, Nakamura K, Matsubara H, et al:
Prednisolone inhibits proliferation of cultured pulmonary artery
smooth muscle cells of patients with idiopathic pulmonary arterial
hypertension. Circulation. 112:1806–1812. 2005. View Article : Google Scholar
|
8
|
Sanchez O, Marcos E, Perros F, et al: Role
of endothelium-derived CC chemokine ligand 2 in idiopathic
pulmonary arterial hypertension. Am J Respir Crit Care Med.
176:1041–1047. 2007. View Article : Google Scholar : PubMed/NCBI
|
9
|
Berg JT, Breen EC, Fu Z, et al: Alveolar
hypoxia increases gene expression of extracellular matrix proteins
and platelet-derived growth factor-B in lung parenchyma. Am J
Respir Crit Care Med. 158:1920–1928. 1998. View Article : Google Scholar : PubMed/NCBI
|
10
|
Díaz Lanza AM, Abad Martínez MJ, Fernández
Matellano L, et al: Lignan and phenylpropanoid glycosides from
Phillyrea latifolia and their in vitro anti-inflammatory
activity. Planta Med. 67:219–223. 2001.
|
11
|
De Sanctis R, De Bellis R, Scesa C, et al:
In vitro protective effect of Rhodiola rosea extract against
hypochlorous acid-induced oxidative damage in human erythrocytes.
Biofactors. 20:147–159. 2004.
|
12
|
Mattioli L and Perfumi M: Rhodiola
rosea L. extract reduces stress- and CRF-induced anorexia in
rats. J Psychopharmacol. 21:742–750. 2007. View Article : Google Scholar
|
13
|
Ming DS, Hillhouse BJ, Guns ES, et al:
Bioactive compounds from Rhodiola rosea (Crassulaceae).
Phytother Res. 19:740–743. 2005. View
Article : Google Scholar
|
14
|
Kanupriya, Prasad D, Sai Ram M, et al:
Cytoprotective and antioxidant activity of Rhodiola
imbricata against tert-butyl hydroperoxide induced oxidative
injury in U-937 human macrophages. Mol Cell Biochem. 275:1–6.
2005.PubMed/NCBI
|
15
|
Li D, Fu Y, Zhang W, et al: Salidroside
attenuates inflammatory responses by suppressing nuclear factor-κB
and mitogen activated protein kinases activation in
lipopolysaccharide-induced mastitis in mice. Inflamm Res. 62:9–15.
2013.PubMed/NCBI
|
16
|
Sun C, Wang Z, Zheng Q and Zhang H:
Salidroside inhibits migration and invasion of human fibrosarcoma
HT1080 cells. Phytomedicine. 19:355–363. 2012. View Article : Google Scholar : PubMed/NCBI
|
17
|
Yin D, Yao W, Chen S, et al: Salidroside,
the main active compound of Rhodiola plants, inhibits high
glucose-induced mesangial cell proliferation. Planta Med.
75:1191–1195. 2009. View Article : Google Scholar : PubMed/NCBI
|
18
|
Hu X, Zhang X, Qiu S, et al: Salidroside
induces cell-cycle arrest and apoptosis in human breast cancer
cells. Biochem Biophys Res Commun. 398:62–67. 2010. View Article : Google Scholar : PubMed/NCBI
|
19
|
Pietra GG, Capron F, Stewart S, et al:
Pathologic assessment of vasculopathies in pulmonary hypertension.
Am Coll Cardiol. 43(12 Suppl S): 25S–32S. 2004. View Article : Google Scholar : PubMed/NCBI
|
20
|
Rabinovitch M: The mouse through the
looking glass: a new door into the pathophysiology of pulmonary
hypertension. Circ Res. 94:1001–1004. 2004. View Article : Google Scholar : PubMed/NCBI
|
21
|
Jirawatnotai S, Aziyu A, Osmundson EC, et
al: Cdk4 is indispensable for postnatal proliferation of the
anterior pituitary. J Biol Chem. 279:51100–51106. 2004. View Article : Google Scholar : PubMed/NCBI
|
22
|
Martín A, Odajima J, Hunt SL, et al: Cdk2
is dispensable for cell cycle inhibition and tumor suppression
mediated by p27(Kip1) and p21(Cip1). Cancer Cell. 7:591–598.
2005.PubMed/NCBI
|
23
|
Abukhdeir AM and Park BH: P21 and p27:
roles in carcinogenesis and drug resistance. Expert Rev Mol Med.
10:e192008. View Article : Google Scholar : PubMed/NCBI
|
24
|
Guan H, Chen C, Zhu L, et al:
Indole-3-carbinol blocks platelet-derived growth factor-stimulated
vascular smooth muscle cell function and reduces neointima
formation in vivo. J Nutr Biochem. 24:62–69. 2013. View Article : Google Scholar
|
25
|
Zhang L, Ding W, Sun H, et al: Salidroside
protects PC12 cells from MPP+-induced apoptosis via
activation of the PI3K/Akt pathway. Food Chem Toxicol.
50:2591–2597. 2012. View Article : Google Scholar : PubMed/NCBI
|
26
|
Zhu Y, Shi YP, Wu D, et al: Salidroside
protects against hydrogen peroxide-induced injury in cardiac H9c2
cells via PI3K-Akt dependent pathway. DNA Cell Biol. 30:809–819.
2011. View Article : Google Scholar : PubMed/NCBI
|
27
|
Diehl JA, Cheng M, Roussel MF and Sherr
CJ: Glycogen synthase kinase-3beta regulates cyclin D1 proteolysis
and subcellular localization. Genes Dev. 12:3499–3511. 1998.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Yu XJ, Han QB, Wen ZS, et al: Gambogenic
acid induces G1 arrest via GSK3β-dependent cyclin D1 degradation
and triggers autophagy in lung cancer cells. Cancer Lett.
322:185–194. 2012.PubMed/NCBI
|
29
|
Malumbres M and Barbacid M: To cycle or
not to cycle: a critical decision in cancer. Nat Rev Cancer.
1:222–231. 2001. View
Article : Google Scholar : PubMed/NCBI
|
30
|
Yin M, Tian S, Huang X, et al: Role and
mechanism of tissue plasminogen activator in venous wall fibrosis
remodeling after deep venous thrombosis via the glycogen synthase
kinase-3 beta signaling pathway. J Surg Res. 184:1182–1195. 2013.
View Article : Google Scholar
|
31
|
Tseng AS, Engel FB and Keating MT: The
GSK-3 inhibitor BIO promotes proliferation in mammalian
cardiomyocytes. Chem Biol. 13:957–963. 2006. View Article : Google Scholar : PubMed/NCBI
|