1
|
Hallenbeck JM and Dutka AJ: Background
review and current concepts of reperfusion injury. Arch Neurol.
47:1245–1254. 1990. View Article : Google Scholar : PubMed/NCBI
|
2
|
Magnoni S, Baker A, George SJ, Duncan WC,
Kerr LE, McCulloch J and Horsburgh K: Differential alterations in
the expression and activity of matrix metalloproteinases 2 and 9
after transient cerebral ischemia in mice. Neurobiol Dis.
17:188–197. 2004. View Article : Google Scholar : PubMed/NCBI
|
3
|
Oguro K, Jover T, Tanaka H, Lin Y, Kojima
T, Oguro N, Grooms SY, Bennett MV and Zukin RS: Global
ischemia-induced increases in the gap junctional proteins connexin
32 (Cx32) and Cx36 in hippocampus and enhanced vulnerability of
Cx32 knock-out mice. J Neurosci. 21:7534–7542. 2001.PubMed/NCBI
|
4
|
Amantea D, Nappi G, Bernardi G, Bagetta G
and Corasaniti MT: Post-ischemic brain damage: pathophysiology and
role of inflammatory mediators. FEBS J. 276:13–26. 2009. View Article : Google Scholar : PubMed/NCBI
|
5
|
Choi JS, Kim SJ, Shin JA, Lee KE and Park
EM: Effects of estrogen on temporal expressions of IL-1beta and
IL-1ra in rat organotypic hippocampal slices exposed to
oxygen-glucose deprivation. Neurosci Lett. 438:233–237. 2008.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Fekete A, Vizi ES, Kovács KJ, Lendvai B
and Zelles T: Layer-specific differences in reactive oxygen species
levels after oxygen-glucose deprivation in acute hippocampal
slices. Free Radic Biol Med. 44:1010–1022. 2008. View Article : Google Scholar
|
7
|
Kiewert C, Kumar V, Hildmann O, Hartmann
J, Hillert M and Klein J: Role of glycine receptors and glycine
release for the neuroprotective activity of bilobalide. Brain Res.
1201:143–150. 2008. View Article : Google Scholar : PubMed/NCBI
|
8
|
Rosenberg GA: Matrix metalloproteinases in
neuroinflammation. Glia. 39:279–291. 2002. View Article : Google Scholar : PubMed/NCBI
|
9
|
Gurney KJ, Estrada EY and Rosenberg GA:
Blood-brain barrier disruption by stromelysin-1 facilitates
neutrophil infiltration in neuroinflammation. Neurobiol Dis.
23:87–96. 2006. View Article : Google Scholar : PubMed/NCBI
|
10
|
Garcia AJ, Tom C, Guemes M, Polanco G,
Mayorga ME, Wend K, Miranda-Carboni GA and Krum SA: ERα signaling
regulates MMP3 expression to induce FasL cleavage and osteoclast
apoptosis. J Bone Miner Res. 28:283–290. 2013.
|
11
|
Gu Z, Kaul M, Yan B, Kridel SJ, Cui J,
Strongin A, Smith JW, Liddington RC and Lipton SA: S-nitrosylation
of matrix metalloproteinases: signaling pathway to neuronal cell
death. Science. 297:1186–1190. 2002. View Article : Google Scholar : PubMed/NCBI
|
12
|
Rosenberg GA, Cunningham LA, Wallace J,
Alexander S, Estrada EY, Grossetete M, Razhagi A, Miller K and
Gearing A: Immunohistochemistry of matrix metalloproteinases in
reperfusion injury to rat brain: activation of MMP-9 linked to
stromelysin-1 and microglia in cell cultures. Brain Res.
893:104–112. 2001. View Article : Google Scholar : PubMed/NCBI
|
13
|
Wetzel M, Rosenberg GA and Cunningham LA:
Tissue inhibitor of metalloproteinases-3 and matrix
metalloproteinase-3 regulate neuronal sensitivity to
doxorubicin-induced apoptosis. Eur J Neurosci. 18:1050–1060. 2003.
View Article : Google Scholar
|
14
|
Cheng Z, He W, Zhou X, Lv Q, Xu X, Yang S,
Zhao C and Guo L: Cordycepin protects against cerebral
ischemia/reperfusion injury in vivo and in vitro. Eur J Pharmacol.
664:20–28. 2011. View Article : Google Scholar : PubMed/NCBI
|
15
|
Walker EJ and Rosenberg GA: TIMP-3 and
MMP-3 contribute to delayed inflammation and hippocampal neuronal
death following global ischemia. Exp Neurol. 216:122–131. 2009.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Kim YS, Kim SS, Cho JJ, Choi DH, Hwang O,
Shin DH, Chun HS, Beal MF and Joh TH: Matrix metalloproteinase-3: a
novel signaling proteinase from apoptotic neuronal cells that
activates microglia. J Neurosci. 25:3701–3711. 2005. View Article : Google Scholar
|
17
|
Choi DH, Kim EM, Son HJ, Joh TH, Kim YS,
Kim D, Flint Beal M and Hwang O: A novel intracellular role of
matrix metalloproteinase-3 during apoptosis of dopaminergic cells.
J Neurochem. 106:405–415. 2008. View Article : Google Scholar : PubMed/NCBI
|
18
|
Kim EM, Shin EJ, Choi JH, Son HJ, Park IS,
Joh TH and Hwang O: Matrix metalloproteinase-3 is increased and
participates in neuronal apoptotic signaling downstream of
caspase-12 during endoplasmic reticulum stress. J Biol Chem.
285:16444–16452. 2010. View Article : Google Scholar
|
19
|
Csaki C, Mobasheri A and Shakibaei M:
Synergistic chondroprotective effects of curcumin and resveratrol
in human articular chondrocytes: inhibition of IL-1β-induced
NF-κB-mediated inflammation and apoptosis. Arthritis Res Ther.
11:R1652009.PubMed/NCBI
|
20
|
Celotti E, Ferrarini R, Zironi R and Conte
LS: Resveratrol content of some wines obtained from dried
Valpolicella grapes: Recioto and Amarone. J Chromatogr A.
730:47–52. 1996. View Article : Google Scholar : PubMed/NCBI
|
21
|
Pany S, Majhi A and Das J: PKC activation
by resveratrol derivatives with unsaturated aliphatic chain. PLoS
One. 7:e528882012. View Article : Google Scholar : PubMed/NCBI
|
22
|
Das J, Pany S and Majhi A: Chemical
modifications of resveratrol for improved protein kinase C alpha
activity. Bioorg Med Chem. 19:5321–5333. 2011. View Article : Google Scholar : PubMed/NCBI
|
23
|
Carrizzo A, Puca A, Damato A, Marino M,
Franco E, Pompeo F, Traficante A, Civitillo F, Santini L, Trimarco
V and Vecchione C: Resveratrol improves vascular function in
patients with hypertension and dyslipidemia by modulating NO
metabolism. Hypertension. 62:359–366. 2013. View Article : Google Scholar : PubMed/NCBI
|
24
|
Kesherwani V, Atif F, Yousuf S and Agrawal
SK: Resveratrol protects spinal cord dorsal column from hypoxic
injury by activating Nrf-2. Neuroscience. 241:80–88. 2013.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Wang Q, Xu J, Rottinghaus GE, Simonyi A,
Lubahn D, Sun GY and Sun AY: Resveratrol protects against global
cerebral ischemic injury in gerbils. Brain Res. 958:439–447. 2002.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Gao D, Zhang X, Jiang X, Peng Y, Huang W,
Cheng G and Song L: Resveratrol reduces the elevated level of MMP-9
induced by cerebral ischemia-reperfusion in mice. Life Sci.
78:2564–2570. 2006. View Article : Google Scholar : PubMed/NCBI
|
27
|
Tauskela JS, Comas T, Hewitt K, Monette R,
Paris J, Hogan M and Morley P: Cross-tolerance to otherwise lethal
N-methyl-D-aspartate and oxygen-glucose deprivation in
preconditioned cortical cultures. Neuroscience. 107:571–584. 2001.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Dal-Cim T, Ludka FK, Martins WC, Reginato
C, Parada E, Egea J, López MG and Tasca CI: Guanosine controls
inflammatory pathways to afford neuroprotection of hippocampal
slices under oxygen and glucose deprivation conditions. J
Neurochem. 126:437–450. 2013. View Article : Google Scholar
|
29
|
Martín-de-Saavedra MD, del Barrio L, Cañas
N, Egea J, Lorrio S, Montell E, Vergés J, García AG and López MG:
Chondroitin sulfate reduces cell death of rat hippocampal slices
subjected to oxygen and glucose deprivation by inhibiting p38, NFκB
and iNOS. Neurochem Int. 58:676–683. 2011.PubMed/NCBI
|
30
|
Molz S, Dal-Cim T, Budni J,
Martín-de-Saavedra MD, Egea J, Romero A, del Barrio L, Rodrigues
AL, López MG and Tasca CI: Neuroprotective effect of guanosine
against glutamate-induced cell death in rat hippocampal slices is
mediated by the phosphatidylinositol-3 kinase/Akt/glycogen synthase
kinase 3β pathway activation and inducible nitric oxide synthase
inhibition. J Neurosci Res. 89:1400–1408. 2011.PubMed/NCBI
|
31
|
Schaller B and Graf R: Cerebral ischemia
and reperfusion: the pathophysiologic concept as a basis for
clinical therapy. J Cereb Blood Flow Metab. 24:351–371. 2004.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Moskowitz MA, Lo EH and Iadecola C: The
science of stroke: mechanisms in search of treatments. Neuron.
67:181–198. 2010. View Article : Google Scholar : PubMed/NCBI
|
33
|
Aoki T, Sumii T, Mori T, Wang X and Lo EH:
Blood-brain barrier disruption and matrix metalloproteinase-9
expression during reperfusion injury: mechanical versus embolic
focal ischemia in spontaneously hypertensive rats. Stroke.
33:2711–2717. 2002. View Article : Google Scholar
|
34
|
Maier CM, Hsieh L, Yu F, Bracci P and Chan
PH: Matrix metalloproteinase-9 and myeloperoxidase expression:
quantitative analysis by antigen immunohistochemistry in a model of
transient focal cerebral ischemia. Stroke. 35:1169–1174. 2004.
View Article : Google Scholar
|
35
|
Pfefferkorn T and Rosenberg GA: Closure of
the blood-brain barrier by matrix metalloproteinase inhibition
reduces rtPA-mediated mortality in cerebral ischemia with delayed
reperfusion. Stroke. 34:2025–2030. 2003. View Article : Google Scholar
|
36
|
Cunningham LA, Wetzel M and Rosenberg GA:
Multiple roles for MMPs and TIMPs in cerebral ischemia. Glia.
50:329–339. 2005. View Article : Google Scholar : PubMed/NCBI
|
37
|
Dzwonek J, Rylski M and Kaczmarek L:
Matrix metalloproteinases and their endogenous inhibitors in
neuronal physiology of the adult brain. FEBS Lett. 567:129–135.
2004. View Article : Google Scholar : PubMed/NCBI
|
38
|
Fujimura M, Tominaga T and Chan PH:
Neuroprotective effect of an antioxidant in ischemic brain injury:
involvement of neuronal apoptosis. Neurocrit Care. 2:59–66. 2005.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Krause GS, White BC, Aust SD, Nayini NR
and Kumar K: Brain cell death following ischemia and reperfusion: a
proposed biochemical sequence. Crit Care Med. 16:714–726. 1988.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Marcu KB, Otero M, Olivotto E, Borzi RM
and Goldring MB: NF-kappaB signaling: multiple angles to target OA.
Curr Drug Targets. 11:599–613. 2010. View Article : Google Scholar : PubMed/NCBI
|
41
|
Shakibaei M, Csaki C, Nebrich S and
Mobasheri A: Resveratrol suppresses interleukin-1β-induced
inflammatory signaling and apoptosis in human articular
chondrocytes: potential for use as a novel nutraceutical for the
treatment of osteoarthritis. Biochem Pharmacol. 76:1426–1439.
2008.
|
42
|
Dolinsky VW, Chakrabarti S, Pereira TJ, et
al: Resveratrol prevents hypertension and cardiac hypertrophy in
hypertensive rats and mice. Biochim Biophys Acta. 1832:1723–1733.
2013. View Article : Google Scholar : PubMed/NCBI
|