1
|
Shepherd JH: Cervical cancer. Best Pract
Res Clin Obstet Gynaecol. 26:293–309. 2012. View Article : Google Scholar
|
2
|
Yashar CM, Spanos WJ, Taylor DD and
Gercel-Taylor C: Potentiation of the radiation effect with
genistein in cervical cancer cells. Gynecol Oncol. 99:199–205.
2005. View Article : Google Scholar : PubMed/NCBI
|
3
|
Dutta A, Bandyopadhyay S, Mandal C and
Chatterjee M: Aloe vera leaf exudate induces a caspase-independent
cell death in Leishmania donovani promastigotes. J Med
Microbiol. 56:629–636. 2007. View Article : Google Scholar : PubMed/NCBI
|
4
|
Krumbiegel G and Schulz HU: Rhein and
aloe-emodin kinetics from senna laxatives in man. Pharmacology.
47:120–124. 1993. View Article : Google Scholar : PubMed/NCBI
|
5
|
Andersen DO, Weber ND, Wood SG, Hughes BG,
Murray BK and North JA: In vitro virucidal activity of selected
anthraquinones and anthraquinone derivatives. Antiviral Res.
16:185–196. 1991. View Article : Google Scholar : PubMed/NCBI
|
6
|
Arosio B, Gagliano N, Fusaro LM,
Parmeggiani L, Tagliabue J, Galetti P, De Castri D, Moscheni C and
Annoni G: Aloe-Emodin quinone pretreatment reduces acute liver
injury induced by carbon tetrachloride. Pharmacol Toxicol.
87:229–233. 2000. View Article : Google Scholar : PubMed/NCBI
|
7
|
Eshun K and He Q: Aloe vera: a valuable
ingredient for the food, pharmaceutical and cosmetic industries - a
review. Crit Rev Food Sci Nutr. 44:91–96. 2004. View Article : Google Scholar : PubMed/NCBI
|
8
|
Guo JM, Xiao BX, Liu Q, Zhang S, Liu DH
and Gong ZH: Anticancer effect of aloe-emodin on cervical cancer
cells involves G2/M arrest and induction of differentiation. Acta
Pharmacol Sin. 28:1991–1995. 2007. View Article : Google Scholar : PubMed/NCBI
|
9
|
Xiao B, Guo J, Liu D and Zhang S:
Aloe-emodin induces in vitro G2/M arrest and alkaline phosphatase
activation in human oral cancer KB cells. Oral Oncol. 43:905–910.
2007. View Article : Google Scholar
|
10
|
Lin JG, Chen GW, Li TM, Chouh ST, Tan TW
and Chung JG: Aloe-emodin induces apoptosis in T24 human bladder
cancer cells through the p53 dependent apoptotic pathway. J Urol.
175:343–347. 2006. View Article : Google Scholar : PubMed/NCBI
|
11
|
Chen HC, Hsieh WT, Chang WC and Chung JG:
Aloe-emodin induced in vitro G2/M arrest of cell cycle in human
promyelocytic leukemia HL-60 cells. Food Chem Toxicol.
42:1251–1257. 2004. View Article : Google Scholar : PubMed/NCBI
|
12
|
Suboj P, Babykutty S, Srinivas P and
Gopala S: Aloe emodin induces G2/M cell cycle arrest and apoptosis
via activation of caspase-6 in human colon cancer cells.
Pharmacology. 89:91–98. 2012. View Article : Google Scholar : PubMed/NCBI
|
13
|
Lin ML, Lu YC, Chung JG, Li YC, Wang SG,
NGSH, Wu CY, Su HL and Chen SS: Aloe-emodin induces apoptosis of
human nasopharyngeal carcinoma cells via caspase-8-mediated
activation of the mitochondrial death pathway. Cancer Lett.
291:46–58. 2010. View Article : Google Scholar : PubMed/NCBI
|
14
|
Guo J, Xiao B, Zhang S, Liu D, Liao Y and
Sun Q: Growth inhibitory effects of gastric cancer cells with an
increase in S phase and alkaline phosphatese activity repression by
aloe-emodin. Cancer Biol Ther. 6:85–88. 2007. View Article : Google Scholar : PubMed/NCBI
|
15
|
Chiu TH, Lai WW, Hsia TC, et al:
Aloe-emodin induces cell death through S-phase arrest and
caspase-dependent pathways in human tongue squamous cancer SCC-4
Cells. Anticancer Res. 29:4503–4511. 2009.PubMed/NCBI
|
16
|
Pawlik TM and Keyomarsi K: Role of the
cell cycle in mediating sensitivity to radiotherapy. Int J Radiat
Oncol Biol Phys. 59:928–942. 2004. View Article : Google Scholar : PubMed/NCBI
|
17
|
Terasima T and Tolmach LJ: X-ray
sensitivity and DNA synthesis in synchronous populations of HeLa
cells. Science. 140:490–492. 1963. View Article : Google Scholar : PubMed/NCBI
|
18
|
Sinclair WK and Morton RA: X-ray
sensitivity during the cell generation cycle of cultured Chinese
hamster cells. Radiat Res. 29:450–474. 1966. View Article : Google Scholar : PubMed/NCBI
|
19
|
Sinclair WK: Cyclic x-ray responses in
mammalian cells in vitro. Radiat Res. 33:620–643. 1968. View Article : Google Scholar : PubMed/NCBI
|
20
|
Chu HL, Mao H, Feng W, Liu JW and Geng Y:
Effects of sulfated polysaccharide from Masson pine (Pinus
massoniana) pollen on the proliferation and cell cycle of HepG2
cells. Int J Biol Macromol. 55:104–108. 2013. View Article : Google Scholar : PubMed/NCBI
|
21
|
Westendorf JM, Swenson KI and Ruderman JV:
The role of cyclin B in meiosis I. J Cell Biol. 108:1431–1444.
1989. View Article : Google Scholar : PubMed/NCBI
|
22
|
West MH and Bonner WM: Histone 2A, a
heteromorphous family of eight protein species. Biochemistry.
19:3238–3245. 1980. View Article : Google Scholar : PubMed/NCBI
|
23
|
Bonner WM, Redon CE, Dickey JS, Nakamura
AJ, Sedelnikova OA, Solier S and Pommier Y: Gamma H2AX and cancer.
Nat Rev Cancer. 8:957–967. 2008.PubMed/NCBI
|
24
|
Rogakou EP, Boon C, Redon C and Bonner WM:
Megabase chromatin domains involved in DNA double-strand breaks
in vivo. J Cell Biol. 146:905–916. 1999. View Article : Google Scholar : PubMed/NCBI
|
25
|
Sedelnikova OA, Pilch DR, Redon C and
Bonner WM: Histone H2AX in DNA damage and repair. Cancer Biol Ther.
2:233–235. 2003. View Article : Google Scholar : PubMed/NCBI
|
26
|
Celeste A, Fernandez-Capetillo O, Kruhlak
MJ, Pilch DR, Staudt DW, Lee A, Bonner RF, Bonner WM and
Nussenzweig A: Histone H2AX phosphorylation is dispensable for the
initial recognition of DNA breaks. Nat Cell Biol. 5:675–679. 2003.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Ward IM, Minn K, Jorda KG and Chen J:
Accumulation of checkpoint protein 53BP1 at DNA breaks involves its
binding to phosphorylated histone H2AX. J Biol Chem.
278:19579–19582. 2003. View Article : Google Scholar : PubMed/NCBI
|
28
|
Baritaki S, Sifakis S, Huerta-Yepez S, et
al: Overexpression of VEGF and TGF-beta1 mRNA in Pap smears
correlates with progression of cervical intraepithelial neoplasia
to cancer: implication of YY1 in cervical tumorigenesis and HPV
infection. Int J Oncol. 31:69–79. 2007.
|
29
|
Arvanitis DA and Spandidos DA:
Deregulation of the G1/S phase transition in cancer and squamous
intraepithelial lesions of the uterine cervix: a case control
study. Oncol Rep. 20:751–760. 2008.PubMed/NCBI
|
30
|
Rudel T and Bokoch GM: Membrane and
morphological changes in apoptotic cells regulated by
caspase-mediated activation of PAK2. Science. 276:1571–1574. 1997.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Xiao B, Guo J, Lou Y, Meng D, Zhao W,
Zhang L, Yan C and Wang D: Inhibition of growth and increase of
alkaline phosphatase activity in cultured human oral cancer cells
by all-trans retinoic acid. Int J Oral Maxillofac Surg. 35:643–648.
2006. View Article : Google Scholar : PubMed/NCBI
|
32
|
Dabare AA, Nouri AM, Cannell H, Moss T,
Nigam AK and Oliver RT: Profile of placental alkaline phosphatase
expression in human malignancies: effect of tumour cell activation
on alkaline phosphatase expression. Urol Int. 63:168–174. 1999.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Leng B, Liu XD and Chen QX: Inhibitory
effects of anticancer peptide from Mercenaria on the BGC-823 cells
and several enzymes. FEBS Lett. 579:1187–1190. 2005. View Article : Google Scholar : PubMed/NCBI
|
34
|
Pecere T, Gazzola MV, Mucignat C, Parolin
C, Vecchia FD, Cavaggioni A, Basso G, Diaspro A, Salvato B, Carli M
and Palù G: Aloe-emodin is a new type of anticancer agent with
selective activity against neuroectodermal tumors. Cancer Res.
60:2800–2804. 2000.PubMed/NCBI
|