1
|
Medina Villaamil V, Alvarez García A,
Aparicio Gallego G, et al: Tissue array analysis for the
differentiation of gliosis from gliomas. Mol Med Rep. 4:451–457.
2011.PubMed/NCBI
|
2
|
Stewart LA: Chemotherapy in adult
high-grade glioma: a systematic review and meta-analysis of
individual patient data from 12 randomised trials. Lancet.
359:1011–1018. 2002. View Article : Google Scholar : PubMed/NCBI
|
3
|
Wang Y, Zhou Z, Luo H, et al: Combination
of tamoxifen and antisense human telomerase RNA inhibits glioma
cell proliferation and anti-apoptosis via suppression of telomerase
activity. Mol Med Rep. 3:935–940. 2010.PubMed/NCBI
|
4
|
Lefranc F, Facchini V and Kiss R:
Proautophagic drugs: a novel means to combat apoptosis-resistant
cancers, with a special emphasis on glioblastomas. Oncologist.
12:1395–1403. 2007. View Article : Google Scholar
|
5
|
Witt O, Deubzer HE, Milde T and Oehme I:
HDAC family: What are the cancer relevant targets? Cancer Lett.
277:8–21. 2009. View Article : Google Scholar : PubMed/NCBI
|
6
|
de Ruijter AJ, van Gennip AH, Caron HN,
Kemp S and van Kuilenburg AB: Histone deacetylases (HDACs):
characterization of the classical HDAC family. Biochem J.
370:737–749. 2003.PubMed/NCBI
|
7
|
Voelter-Mahlknecht S, Ho AD and Mahlknecht
U: Chromosomal organization and localization of the novel class IV
human histone deacetylase 11 gene. Int J Mol Med. 16:589–598.
2005.PubMed/NCBI
|
8
|
Sen N, Kumari R, Singh MI and Das S:
HDAC5, a key component in temporal regulation of p53-mediated
transactivation in response to genotoxic stress. Mol Cell.
52:406–420. 2013. View Article : Google Scholar : PubMed/NCBI
|
9
|
Witt O, Deubzer HE, Milde T and Oehme I:
HDAC family: What are the cancer relevant targets? Cancer Lett.
277:8–21. 2009. View Article : Google Scholar : PubMed/NCBI
|
10
|
Wiegmans AP, Alsop AE, Bots M, et al:
Deciphering the molecular events necessary for synergistic tumor
cell apoptosis mediated by the histone deacetylase inhibitor
vorinostat and the BH3 mimetic ABT-737. Cancer Res. 71:3603–3615.
2011. View Article : Google Scholar
|
11
|
Munster P, Marchion D, Bicaku E, et al:
Clinical and biological effects of valproic acid as a histone
deacetylase inhibitor on tumor and surrogate tissues: phase I/II
trial of valproic acid and epirubicin/FEC. Clin Cancer Res.
15:2488–2496. 2009. View Article : Google Scholar : PubMed/NCBI
|
12
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) Method. Methods. 25:402–408. 2001.
|
13
|
Ronsch K, Jager M, Schopflin A, Danciu M,
Lassmann S and Hecht A: Class I and III HDACs and loss of active
chromatin features contribute to epigenetic silencing of CDX1 and
EPHB tumor suppressor genes in colorectal cancer. Epigenetics.
6:610–622. 2011. View Article : Google Scholar : PubMed/NCBI
|
14
|
Khan O and La Thangue NB: HDAC inhibitors
in cancer biology: emerging mechanisms and clinical applications.
Immunol Cell Biol. 90:85–94. 2012. View Article : Google Scholar : PubMed/NCBI
|
15
|
Roy S, Shor AC, Bagui TK, Seto E and
Pledger WJ: Histone deacetylase 5 represses the transcription of
cyclin D3. J Cell Biochem. 104:2143–2154. 2008. View Article : Google Scholar : PubMed/NCBI
|
16
|
McKinsey TA, Zhang CL, Lu J and Olson EN:
Signal-dependent nuclear export of a histone deacetylase regulates
muscle differentiation. Nature. 408:106–111. 2000. View Article : Google Scholar : PubMed/NCBI
|
17
|
Milde T, Oehme I, Korshunov A, et al:
HDAC5 and HDAC9 in medulloblastoma: novel markers for risk
stratification and role in tumor cell growth. Clin Cancer Res.
16:3240–3252. 2010. View Article : Google Scholar : PubMed/NCBI
|
18
|
Chen J, Xia J, Yu YL, et al: HDAC5
promotes osteosarcoma progression by upregulation of Twist 1
expression. Tumour Biol. 35:1383–1387. 2013. View Article : Google Scholar : PubMed/NCBI
|
19
|
Rana NA and Haltiwanger RS: Fringe
benefits: functional and structural impacts of O-glycosylation on
the extracellular domain of Notch receptors. Curr Opin Struct Biol.
21:583–589. 2011. View Article : Google Scholar : PubMed/NCBI
|
20
|
Ayukawa T, Matsumoto K, Ishikawa HO, et
al: Rescue of Notch signaling in cells incapable of GDP-L-fucose
synthesis by gap junction transfer of GDP-L-fucose in
Drosophila. Proc Natl Acad Sci USA. 109:15318–15323. 2012.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Hu B, Nandhu MS, Sim H, et al: Fibulin-3
promotes glioma growth and resistance through a novel paracrine
regulation of Notch signaling. Cancer Res. 72:3873–3885. 2012.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Berry N, Gursel DB and Boockvar JA: Notch
inhibition via micro-RNA blocks glioma development. Neurosurgery.
70:N20–N22. 2012. View Article : Google Scholar : PubMed/NCBI
|