1
|
Wallace DC: Bioenergetics in human
evolution and disease: implications for the origins of biological
complexity and the missing genetic variation of common diseases.
Philos Trans R Soc Lond B Biol Sci. 368:2012.02672013.
|
2
|
Féthière J, Venzke D, Diepholz M, et al:
Building the stator of the yeast vacuolar-ATPase: specific
interaction between subunits E and G. J Biol Chem. 279:40670–40676.
2004.PubMed/NCBI
|
3
|
Czarnecka A and Bartnik E: The role of the
mitochondrial genome in ageing and carcinogenesis. J Aging Res.
2011:1364352011. View Article : Google Scholar : PubMed/NCBI
|
4
|
Grzybowska-Szatkowska L and Slaska B:
Mitochondrial DNA and carcinogenesis (review). Mol Med Rep.
6:923–930. 2012.
|
5
|
Zhu W, Qin W, Bradley P, Wessel A, Puckett
CL and Sauter ER: Mitochondrial DNA mutations in breast cancer
tissue and in matched nipple aspirate fluid. Carcinogenesis.
26:145–152. 2005. View Article : Google Scholar : PubMed/NCBI
|
6
|
Thomas PD, Campbell MJ, Kejariwal A, Mi H,
et al: PANTHER: A library of protein families and subfamilies
indexed by function. Genome Res. 13:2129–2141. 2003. View Article : Google Scholar : PubMed/NCBI
|
7
|
Sonnhammer ELL, von Heijne G and Krogh A:
A hidden Markov model for predicting transmembrane helices in
protein sequences. Proc Int Conf Intell Syst Mol Biol; 6:175–182.
1998.
|
8
|
Finn RD, Mistry J, Tate J, Coggill P, et
al: The Pfam protein families database. Nucleic Acids Res.
38:D211–D222. 2010. View Article : Google Scholar : PubMed/NCBI
|
9
|
Muñoz V and Serrano L: Elucidating the
folding problem of helical peptides using empirical parameters. Nat
Struct Mol Biol. 1:399–409. 1994.
|
10
|
Kyte J and Doolittle RF: A simple method
for displaying the hydropathic character of a protein. J Mol Biol.
157:105–132. 1982. View Article : Google Scholar : PubMed/NCBI
|
11
|
Gasteiger E, Hoogland C, Gattiker A,
Duvaud S, Wilkins MR, Appel RD and Bairoch A: Protein
identification and analysis tools on the ExPASy server. The
Proteomics Protocols Handbook. Walker JM: Humana Press; New York,
NY: pp. 571–607. 2005, View Article : Google Scholar
|
12
|
Goldenberg O, Erez E, Nimrod G and Ben-Tal
N: The ConSurf-DB: pre-calculated evolutionary conservation
profiles of protein structures. Nucleic Acids Res. 37:D323–D327.
2009. View Article : Google Scholar : PubMed/NCBI
|
13
|
Glaser F, Pupko T, Paz I, Bell RE,
Bechor-Shental D, Martz E and Ben-Tal N: ConSurf: identification of
functional regions in proteins by surface-mapping of phylogenetic
information. Bioinformatics. 19:163–164. 2003. View Article : Google Scholar : PubMed/NCBI
|
14
|
Canter JA, Kallianpur AR, Parl FF and
Millikan RC: Mitochondrial DNA G10398A polymorphism and invasive
breast cancer in African-American women. Cancer Res. 65:8028–8033.
2005.
|
15
|
Grzybowska-Szatkowska L and Slaska B:
Polymorphisms in genes encoding mt-tRNA in female breast cancer in
Poland. Mitochondrial DNA. 23:106–111. 2012. View Article : Google Scholar : PubMed/NCBI
|
16
|
Petros JA, Baumann AK, Ruiz-Pesini E, et
al: MtDNA mutations increase tumorigenicity in prostate cancer.
Proc Natl Acad Sci USA. 102:719–724. 2005. View Article : Google Scholar : PubMed/NCBI
|
17
|
Brandon M, Baldi P and Wallace DC:
Mitochondrial mutations in cancer. Oncogene. 25:4647–4662. 2006.
View Article : Google Scholar
|
18
|
Jones JB, Song JJ, Hempen PM, Parmigiani
G, Hruban RH and Kern SE: Detection of mitochondrial DNA mutations
in pancreatic cancer offers a ‘mass’-ive advantage over detection
of nuclear DNA mutations. Cancer Res. 61:1299–1304. 2001.PubMed/NCBI
|
19
|
Guo XG, Liu CT, Dai H and Guo QN:
Mutations in the mitochondrial ATPase6 gene are frequent in human
osteosarcoma. Exp Mol Pathol. 94:285–288. 2013. View Article : Google Scholar : PubMed/NCBI
|
20
|
Dasgupta S, Shao CB, Keane TE, et al:
Detection of mitochondrial deoxyribonucleic acid alterations in
urine from urothelial cells carcinoma patients. Int J Cancer.
131:158–164. 2012. View Article : Google Scholar
|
21
|
Habano W, Nakamura S and Sugai T:
Microsatellite instability in the mitochondrial DNA of colorectal
carcinomas: evidence for mismatch repair systems in mitochondrial
genome. Oncogene. 17:1931–1937. 1998. View Article : Google Scholar : PubMed/NCBI
|
22
|
Liu VW, Shi HH, Cheung AN, et al: High
incidence of somatic mitochondrial DNA mutations in human ovarian
carcinomas. Cancer Res. 61:5998–6001. 2001.PubMed/NCBI
|
23
|
Slaska B, Grzybowska-Szatkowska L, Surdyka
M, Nisztuk S, Rozanska D, Rozanski P, Smiech A and Orzelski M:
Mitochondrial D-loop mutations and polymorphisms are connected with
canine malignant cancers. Mitochondrial DNA. 25:238–243. 2014.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Slaska B, Grzybowska-Szatkowska L, Nisztuk
S, Surdyka M and Rozanska D: Mitochondrial DNA polymorphism in
genes encoding ND1, COI and CYTB in canine malignant cancers.
Mitochondrial DNA. Oct 9–2013. View Article : Google Scholar
|
25
|
Hofhaus G and Gattermann N: Mitochondria
harbouring mutant mtDNA - a cuckoo in the nest? Biol Chem.
380:871–877. 1999. View Article : Google Scholar : PubMed/NCBI
|
26
|
Aikhionbare FO, Mehrabi S, Kumaresan K,
Zavareh M, Olatinwo M, Odunsi K and Partridge E: Mitochondrial DNA
sequence variants in epithelial ovarian tumor subtypes and stages.
J Carcinog. 6:12007. View Article : Google Scholar : PubMed/NCBI
|
27
|
Czarnecka AM, Krawczyk T, Zdrozny M, et
al: Mitochondrial NADH-dehydrogenase subunit 3 (ND3) polymorphism
(A10398G) and sporadic breast cancer in Poland. Breast Cancer Res
Treat. 121:511–518. 2010. View Article : Google Scholar : PubMed/NCBI
|
28
|
Setiawan VW, Chu LH, John EM, et al:
Mitochondrial DNA G10398A variant is not associated with breast
cancer in African-American women. Cancer Genet Cytogenet.
181:16–19. 2008. View Article : Google Scholar : PubMed/NCBI
|
29
|
Liu VW, Wang Y, Yang HJ, et al:
Mitochondrial DNA variant 16189T>C is associated with
susceptibility to endometrial cancer. Hum Mutat. 22:173–174.
2003.
|