Resveratrol attenuates hypoxia/reoxygenation‑induced Ca2+ overload by inhibiting the Wnt5a/Frizzled‑2 pathway in rat H9c2 cells

  • Authors:
    • Xiang Wu
    • Shanshan Zhou
    • Ning Zhu
    • Xianbao Wang
    • Wen Jin
    • Xudong Song
    • Aihua Chen
  • View Affiliations

  • Published online on: August 14, 2014     https://doi.org/10.3892/mmr.2014.2488
  • Pages: 2542-2548
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Resveratrol is able to protect myocardial cells from ischemia/reperfusion‑induced injury. However, the mechanism has yet to be fully elucidated. In the present study, it is reported that resveratrol has a critical role in the control of Ca2+ overload, which is the primary underlying cause of ischemia/reperfusion injury. Hypoxia/reoxygenation (H/R) treatment decreased the cell viability and increased the apoptosis of H9c2 cells, whereas the caspase‑3 and intracellular Ca2+ levels were greatly elevated compared with the control group. Treatment of H9c2 cells with resveratrol (5, 15 and 30 µM) reduced caspase‑3 expression and cardiomyocyte apoptosis in a dose‑dependent manner, and the intracellular Ca2+ overload was also significantly decreased. Furthermore, Frizzled‑2 and Wnt5a belong to the non‑canonical Wnt/Ca2+ pathway, which have been demonstrated to be responsible for Ca2+ overload, and were thus detected in the present study. The results indicated that both the mRNA and protein expression levels of Frizzled‑2 and Wnt5a in H/R‑induced H9c2 cells were markedly increased compared with the levels found in normal cells, and treatment with resveratrol (5, 15 and 30 µM) significantly reduced the expression of Frizzled‑2 and Wnt5a compared with the H/R group. The results indicated that resveratrol protected myocardial cells from H/R injury by inhibiting the Ca2+ overload through suppression of the Wnt5a/Frizzled‑2 pathway.
View Figures
View References

Related Articles

Journal Cover

November-2014
Volume 10 Issue 5

Print ISSN: 1791-2997
Online ISSN:1791-3004

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
x
Spandidos Publications style
Wu X, Zhou S, Zhu N, Wang X, Jin W, Song X and Chen A: Resveratrol attenuates hypoxia/reoxygenation‑induced Ca2+ overload by inhibiting the Wnt5a/Frizzled‑2 pathway in rat H9c2 cells. Mol Med Rep 10: 2542-2548, 2014
APA
Wu, X., Zhou, S., Zhu, N., Wang, X., Jin, W., Song, X., & Chen, A. (2014). Resveratrol attenuates hypoxia/reoxygenation‑induced Ca2+ overload by inhibiting the Wnt5a/Frizzled‑2 pathway in rat H9c2 cells. Molecular Medicine Reports, 10, 2542-2548. https://doi.org/10.3892/mmr.2014.2488
MLA
Wu, X., Zhou, S., Zhu, N., Wang, X., Jin, W., Song, X., Chen, A."Resveratrol attenuates hypoxia/reoxygenation‑induced Ca2+ overload by inhibiting the Wnt5a/Frizzled‑2 pathway in rat H9c2 cells". Molecular Medicine Reports 10.5 (2014): 2542-2548.
Chicago
Wu, X., Zhou, S., Zhu, N., Wang, X., Jin, W., Song, X., Chen, A."Resveratrol attenuates hypoxia/reoxygenation‑induced Ca2+ overload by inhibiting the Wnt5a/Frizzled‑2 pathway in rat H9c2 cells". Molecular Medicine Reports 10, no. 5 (2014): 2542-2548. https://doi.org/10.3892/mmr.2014.2488