1
|
Li MD, Ruan HB, Hughes ME, et al: O-GlcNAc
signaling entrains the circadian clock by inhibiting BMAL1/CLOCK
ubiquitination. Cell Metab. 17:303–310. 2013. View Article : Google Scholar : PubMed/NCBI
|
2
|
Korencic A, Bordyugov G, Kosir R, Rozman
D, Golicnik M and Herzel H: The interplay of cis-regulatory
elements rules circadian rhythms in mouse liver. PLoS One.
7:e468352012. View Article : Google Scholar : PubMed/NCBI
|
3
|
Prendergast BJ, Cisse YM, Cable EJ and
Zucker I: Dissociation of ultradian and circadian phenotypes in
female and male Siberian hamsters. J Biol Rhythms. 27:287–298.
2012. View Article : Google Scholar : PubMed/NCBI
|
4
|
Granados-Fuentes D, Ben-Josef G, Perry G,
Wilson DA, Sullivan-Wilson A and Herzog ED: Daily rhythms in
olfactory discrimination depend on clock genes but not the
suprachiasmatic nucleus. J Biol Rhythms. 26:552–560. 2011.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Valnegri P, Khelfaoui M, Dorseuil O, et
al: A circadian clock in hippocampus is regulated by interaction
between oligophrenin-1 and Rev-erbα. Nat Neurosci. 14:1293–1301.
2011.PubMed/NCBI
|
6
|
Amir S and Stewart J: Motivational
modulation of rhythms of the expression of the clock protein PER2
in the limbic forebrain. Biol Psychiatry. 65:829–834. 2009.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Amir S and Stewart J: Behavioral and
hormonal regulation of expression of the clock protein, PER2, in
the central extended amygdala. Prog Neuropsychopharmacol Biol
Psychiatry. 33:1321–1328. 2009. View Article : Google Scholar : PubMed/NCBI
|
8
|
Yamaguchi M, Kotani K, Sakane N, et al:
The CLOCK 3111T/C SNP is associated with morning gastric motility
in healthy young women. Physiol Behav. 107:87–91. 2012. View Article : Google Scholar : PubMed/NCBI
|
9
|
Kucera N, Schmalen L, Hennig S, et al:
Unwinding the differences of the mammalian PERIOD clock proteins
from crystal structure to cellular function. Proc Natl acad Sci
USA. 109:3311–3316. 2012. View Article : Google Scholar : PubMed/NCBI
|
10
|
Hood S, Cassidy P, Cossette MP, et al:
Endogenous dopamine regulates the rhythm of expression of the clock
protein PER2 in the rat dorsal striatum via daily activation of D2
dopamine receptors. J Neurosci. 30:14046–14058. 2010. View Article : Google Scholar : PubMed/NCBI
|
11
|
Wang Y, Yao Q and Chen KP: Progress of
studies on family members and functions of animal bHLH
transcription factors. Yi Chuan. 32:307–330. 2010.(In Chinese).
|
12
|
Swanson G, Forsyth CB, Tang Y, et al: Role
of intestinal circadian genes in alcohol-induced gut leakiness.
Alcohol Clin Exp Res. 35:1305–1314. 2011. View Article : Google Scholar : PubMed/NCBI
|
13
|
Konturek PC, Brzozowski T and Konturek SJ:
Gut clock: implication of circadian rhythms in the gastrointestinal
tract. J Physiol Pharmacol. 62:139–150. 2011.PubMed/NCBI
|
14
|
Manfredini R and Portaluppi F: Night shift
and impaired endothelial function: circadian out-of-synch may play
a role. Int J Cardiol. 154:94–95. 2012. View Article : Google Scholar : PubMed/NCBI
|
15
|
Tonsfeldt KJ and Chappell PE: Clocks on
top: the role of the circadian clock in the hypothalamic and
pituitary regulation of endocrine physiology. Mol Cell Endocrinol.
349:3–12. 2012. View Article : Google Scholar : PubMed/NCBI
|
16
|
Harbour VL, Robinson B and Amir S:
Variations in daily expression of the circadian clock protein,
PER2, in the rat limbic forebrain during stable entrainment to a
long light cycle. J Mol Neurosci. 45:154–161. 2011. View Article : Google Scholar : PubMed/NCBI
|
17
|
Mueller AD, Mear RJ and Mistlberger RE:
Inhibition of hippocampal neurogenesis by sleep deprivation is
independent of circadian disruption and melatonin suppression.
Neuroscience. 193:170–181. 2011. View Article : Google Scholar : PubMed/NCBI
|
18
|
Pezuk P, Mohawk JA, Wang LA and Menaker M:
Glucocorticoids as entraining signals for peripheral circadian
oscillators. Endocrinology. 153:4775–4783. 2012. View Article : Google Scholar : PubMed/NCBI
|
19
|
Albrecht U: Timing to perfection: the
biology of central and peripheral circadian clocks. Neuron.
74:246–260. 2012. View Article : Google Scholar : PubMed/NCBI
|
20
|
Glass JD, Brager AJ, Stowie AC and Prosser
RA: Cocaine modulates pathways for photic and nonphotic entrainment
of the mammalian SCN circadian clock. Am J Physiol Regul Integr
Comp Physiol. 302:R740–R750. 2012. View Article : Google Scholar : PubMed/NCBI
|
21
|
Ripperger JA and Albrecht U: The circadian
clock component PERIOD2: from molecular to cerebral functions. Prog
Brain Res. 199:233–245. 2012. View Article : Google Scholar : PubMed/NCBI
|
22
|
Hagenauer MH and Lee TM: The
neuroendocrine control of the circadian system: Adolescent
chronotype. Front Neuroendocrinol. 33:211–229. 2012. View Article : Google Scholar : PubMed/NCBI
|
23
|
Jiang WG, Li SX, Zhou SJ, Sun Y, Shi J and
Lu L: Chronic unpredictable stress induces a reversible change of
PER2 rhythm in the suprachiasmatic nucleus. Brain Res. 1399:25–32.
2011. View Article : Google Scholar : PubMed/NCBI
|
24
|
Ogawa Y, Koike N, Kurosawa G, Soga T,
Tomita M and Tei H: Positive autoregulation delays the expression
phase of mammalian clock gene Per2. PLoS One. 6:e186632011.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Myung J, Hong S, Hatanaka F, Nakajima Y,
De Schutter E and Takumi T: Period coding of Bmal1 oscillators in
the suprachiasmatic nucleus. J Neurosci. 32:8900–8918. 2012.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Duong HA, Robles MS, Knutti D and Weitz
CJ: A molecular mechanism for circadian clock negative feedback.
Science. 332:1436–1439. 2011. View Article : Google Scholar : PubMed/NCBI
|
27
|
Perrin JS, Segall LA, Harbour VL, Woodside
B and Amir S: The expression of the clock protein PER2 in the
limbic forebrain is modulated by the estrous cycle. Proc Natl Acad
Sci USA. 103:5591–5596. 2006. View Article : Google Scholar : PubMed/NCBI
|
28
|
Maras PM and Baram TZ: Sculpting the
hippocampus from within: stress, spines, and CRH. Trends Neurosci.
35:315–324. 2012. View Article : Google Scholar : PubMed/NCBI
|
29
|
Carrasco J, Marquez C, Nadal R, Tobena A,
Fernandez-Teruel A and Armario A: Characterization of central and
peripheral components of the hypothalamus-pituitary-adrenal axis in
the inbred Roman rat strains. Psychoneuroendocrinology. 33:437–445.
2008. View Article : Google Scholar : PubMed/NCBI
|
30
|
Hill MN, Patel S, Campolongo P, Tasker JG,
Wotjak CT and Bains JS: Functional interactions between stress and
the endocannabinoid system: from synaptic signaling to behavioral
output. J Neurosci. 30:14980–14986. 2010. View Article : Google Scholar : PubMed/NCBI
|
31
|
Costine BA, Oberlander JG, Davis MC, et
al: Chronic anabolic androgenic steroid exposure alters
corticotropin releasing factor expression and anxiety-like
behaviors in the female mouse. Psychoneuroendocrinology.
35:1473–1485. 2010. View Article : Google Scholar
|
32
|
Silberman Y, Matthews RT and Winder DG: A
corticotropin releasing factor pathway for ethanol regulation of
the ventral tegmental area in the bed nucleus of the stria
terminalis. J Neurosci. 33:950–960. 2013. View Article : Google Scholar
|
33
|
Cruz MT, Herman MA, Kallupi M and Roberto
M: Nociceptin/orphanin FQ blockade of corticotropin-releasing
factor-induced gamma-aminobutyric acid release in central amygdala
is enhanced after chronic ethanol exposure. Biol Psychiatry.
71:666–676. 2012. View Article : Google Scholar
|
34
|
Malloy JN, Paulose JK, Li Y and Cassone
VM: Circadian rhythms of gastrointestinal function are regulated by
both central and peripheral oscillators. Am J Physiol Gastrointest
Liver Physiol. 303:G461–G473. 2012. View Article : Google Scholar : PubMed/NCBI
|
35
|
Gaszner B, Van Wijk DC, Korosi A, Jozsa R,
Roubos EW and Kozicz T: Diurnal expression of period 2 and
urocortin 1 in neurones of the non-preganglionic Edinger-Westphal
nucleus in the rat. Stress. 12:115–124. 2009. View Article : Google Scholar : PubMed/NCBI
|
36
|
Huang TS, Ruoff P and Fjelldal PG: Effect
of continuous light on daily levels of plasma melatonin and
cortisol and expression of clock genes in pineal gland, brain, and
liver in atlantic salmon postsmolts. Chronobiol Int. 27:1715–1734.
2010. View Article : Google Scholar
|
37
|
Kino T: Circadian rhythms of
glucocorticoid hormone actions in target tissues: potential
clinical implications. Sci Signal. 5(pt4)2012. View Article : Google Scholar
|
38
|
Schulkin J: Evolutionary conservation of
glucocorticoids and corticotropin releasing hormone: behavioral and
physiological adaptations. Brain Res. 1392:27–46. 2011. View Article : Google Scholar : PubMed/NCBI
|
39
|
Son GH, Chung S and Kim K: The adrenal
peripheral clock: glucocorticoid and the circadian timing system.
Front Neuroendocrinol. 32:451–465. 2011. View Article : Google Scholar : PubMed/NCBI
|
40
|
Nader N, Chrousos GP and Kino T:
Interactions of the circadian CLOCK system and the HPA axis. Trends
Endocrinol Metab. 21:277–286. 2010. View Article : Google Scholar : PubMed/NCBI
|
41
|
Charmandari E, Chrousos GP, Lambrou GI, et
al: Peripheral CLOCK regulates target-tissue glucocorticoid
receptor transcriptional activity in a circadian fashion in man.
PLoS One. 6:e256122011. View Article : Google Scholar
|
42
|
Lilley TR, Wotus C, Taylor D, Lee JM and
de la Iglesia HO: Circadian regulation of cortisol release in
behaviorally split golden hamsters. Endocrinology. 153:732–738.
2012. View Article : Google Scholar : PubMed/NCBI
|
43
|
So AY, Bernal TU, Pillsbury ML, Yamamoto
KR and Feldman BJ: Glucocorticoid regulation of the circadian clock
modulates glucose homeostasis. Proc Natl Acad Sci USA.
106:17582–17587. 2009. View Article : Google Scholar : PubMed/NCBI
|
44
|
Girotti M, Weinberg MS and Spencer RL:
Diurnal expression of functional and clock-related genes throughout
the rat HPA axis: system-wide shifts in response to a restricted
feeding schedule. Am J Physiol Endocrinol Metab. 296:E888–E897.
2009. View Article : Google Scholar : PubMed/NCBI
|
45
|
Helms CM, McClintick MN and Grant KA:
Social rank, chronic ethanol self-administration, and diurnal
pituitary-adrenal activity in cynomolgus monkeys.
Psychopharmacology (Berl). 224:133–143. 2012. View Article : Google Scholar : PubMed/NCBI
|
46
|
Chung S, Son GH and Kim K: Adrenal
peripheral oscillator in generating the circadian glucocorticoid
rhythm. Ann NY Acad Sci. 1220:71–81. 2011. View Article : Google Scholar : PubMed/NCBI
|
47
|
Qu X, Metz RP, Porter WW, Neuendorff N,
Earnest BJ and Earnest DJ: The clock genes period 1 and period 2
mediate diurnal rhythms in dioxin-induced Cyp1A1 expression in the
mouse mammary gland and liver. Toxicol Lett. 196:28–32. 2010.
View Article : Google Scholar : PubMed/NCBI
|
48
|
Yang S, Liu A, Weidenhammer A, et al: The
role of mPer2 clock gene in glucocorticoid and feeding rhythms.
Endocrinology. 150:2153–2160. 2009. View Article : Google Scholar : PubMed/NCBI
|
49
|
Imanishi M, Yamamoto K, Yamada H, Hirose
Y, Okamura H and Futaki S: Construction of a rhythm transfer system
that mimics the cellular clock. ACS Chem Biol. 7:1817–1821. 2012.
View Article : Google Scholar : PubMed/NCBI
|
50
|
Nebzydoski SJ, Pozzo S, Nemec L, Rankin MK
and Gressley TF: The effect of dexamethasone on clock gene mRNA
levels in bovine neutrophils and lymphocytes. Vet Immunol
Immunopathol. 138:183–192. 2010. View Article : Google Scholar : PubMed/NCBI
|
51
|
Verwey M and Amir S: Variable restricted
feeding disrupts the daily oscillations of Period2 expression in
the limbic forebrain and dorsal striatum in rats. J Mol Neurosci.
46:258–264. 2012. View Article : Google Scholar : PubMed/NCBI
|
52
|
Sherman H, Genzer Y, Cohen R, Chapnik N,
Madar Z and Froy O: Timed high-fat diet resets circadian metabolism
and prevents obesity. FASEB J. 26:3493–3502. 2012. View Article : Google Scholar : PubMed/NCBI
|
53
|
Milagro FI, Gomez-Abellan P, Campion J,
Martinez JA, Ordovas JM and Garaulet M: CLOCK, PER2 and BMAL1 DNA
methylation: association with obesity and metabolic syndrome
characteristics and monounsaturated fat intake. Chronobiol Int.
29:1180–1194. 2012. View Article : Google Scholar : PubMed/NCBI
|
54
|
Solomon MB, Sakai RR, Woods SC and Foster
MT: Differential effects of glucocorticoids on energy homeostasis
in Syrian hamsters. Am J Physiol Endocrinol Metab. 301:E307–E316.
2011. View Article : Google Scholar : PubMed/NCBI
|
55
|
Nyberg CH, Leonard WR, Tanner S, et al:
Diurnal cortisol rhythms and child growth: exploring the life
history consequences of HPA activation among the Tsimane’. Am J Hum
Biol. 24:730–738. 2012.PubMed/NCBI
|
56
|
Parylak SL, Cottone P, Sabino V, Rice KC
and Zorrilla EP: Effects of CB1 and CRF1 receptor antagonists on
binge-like eating in rats with limited access to a sweet fat diet:
lack of withdrawal-like responses. Physiol Behav. 107:231–242.
2012. View Article : Google Scholar : PubMed/NCBI
|
57
|
Scheer FA, Hilton MF, Mantzoros CS and
Shea SA: Adverse metabolic and cardiovascular consequences of
circadian misalignment. Proc Natl Acad Sci USA. 106:4453–4458.
2009. View Article : Google Scholar : PubMed/NCBI
|
58
|
Hoogerwerf WA: Role of clock genes in
gastrointestinal motility. Am J Physiol Gastrointest Liver Physiol.
299:G549–G555. 2010. View Article : Google Scholar : PubMed/NCBI
|
59
|
Iwashina I, Mochizuki K, Inamochi Y and
Goda T: Clock genes regulate the feeding schedule-dependent diurnal
rhythm changes in hexose transporter gene expressions through the
binding of BMAL1 to the promoter/enhancer and transcribed regions.
J Nutr Biochem. 22:334–343. 2011. View Article : Google Scholar
|
60
|
Wells MM, Roth L and Chande N: Sleep
disruption secondary to overnight call shifts is associated with
irritable bowel syndrome in residents: a cross-sectional study. Am
J Gastroenterol. 107:1151–1156. 2012. View Article : Google Scholar : PubMed/NCBI
|
61
|
Vyas MV, Garg AX, Iansavichus AV, et al:
Shift work and vascular events: systematic review and
meta-analysis. BMJ. 345:e48002012. View Article : Google Scholar : PubMed/NCBI
|
62
|
Nojkov B, Rubenstein JH, Chey WD and
Hoogerwerf WA: The impact of rotating shift work on the prevalence
of irritable bowel syndrome in nurses. Am J Gastroenterol.
105:842–847. 2010. View Article : Google Scholar : PubMed/NCBI
|
63
|
Heitkemper MM, Cain KC, Deechakawan W, et
al: Anticipation of public speaking and sleep and the
hypothalamic-pituitary-adrenal axis in women with irritable bowel
syndrome. Neurogastroenterol Motil. 24:626–631. 2012. View Article : Google Scholar : PubMed/NCBI
|
64
|
Khan S and Chang L: Diagnosis and
management of IBS. Nat Rev Gastroenterol Hepatol. 7:565–581. 2010.
View Article : Google Scholar
|
65
|
Bellini M, Gemignani A, Gambaccini D, et
al: Evaluation of latent links between irritable bowel syndrome and
sleep quality. World J Gastroenterol. 17:5089–5096. 2011.
View Article : Google Scholar : PubMed/NCBI
|
66
|
Hongo M: Epidemiology of FGID symptoms in
Japanese general population with reference to life style. J
Gastroenterol Hepatol. 26(Suppl 3): 19–22. 2011. View Article : Google Scholar : PubMed/NCBI
|
67
|
Burioka N, Koyanagi S, Endo M, et al:
Clock gene dysfunction in patients with obstructive sleep apnoea
syndrome. Eur Respir J. 32:105–112. 2008. View Article : Google Scholar : PubMed/NCBI
|
68
|
Miyamoto H, Nakamaru-Ogiso E, Hamada K and
Hensch TK: Serotonergic integration of circadian clock and
ultradian sleep-wake cycles. J Neurosci. 32:14794–14803. 2012.
View Article : Google Scholar : PubMed/NCBI
|
69
|
Mozaffari S, Rahimi R and Abdollahi M:
Implications of melatonin therapy in irritable bowel syndrome: a
systematic review. Curr Pharm Des. 16:3646–3655. 2010. View Article : Google Scholar : PubMed/NCBI
|
70
|
Enck P, Kaiser C, Felber M, et al:
Circadian variation of rectal sensitivity and gastrointestinal
peptides in healthy volunteers. Neurogastroenterol Motil. 21:52–58.
2009. View Article : Google Scholar : PubMed/NCBI
|
71
|
Freire AO, Sugai GC, Togeiro SM, Mello LE
and Tufik S: Immediate effect of acupuncture on the sleep pattern
of patients with obstructive sleep apnoea. Acupunct Med.
28:115–119. 2010. View Article : Google Scholar : PubMed/NCBI
|