1
|
Hearing VJ: Biogenesis of pigment
granules: a sensitive way to regulate melanocyte function. J
Dermatol Sci. 37:3–14. 2005. View Article : Google Scholar : PubMed/NCBI
|
2
|
Brenner M and Hearing VJ: The protective
role of melanin against UV damage in human skin. Photochem
Photobiol. 84:539–549. 2008. View Article : Google Scholar : PubMed/NCBI
|
3
|
Slominski A, Tobin DJ, Shibahara S and
Wortsman J: Melanin pigmentation in mammalian skin and its hormonal
regulation. Physiol Rev. 84:1155–1228. 2004. View Article : Google Scholar : PubMed/NCBI
|
4
|
Slominski A: Neuroendocrine activity of
the melanocyte. Exp Dermatol. 18:760–763. 2009. View Article : Google Scholar
|
5
|
del Marmol V and Beermann F: Tyrosinase
and related proteins in mammalian pigmentation. FEBS Lett.
381:165–168. 1996.PubMed/NCBI
|
6
|
Hearing VJ and Jiménez M: Mammalian
tyrosinase - the critical regulatory control point in melanocyte
pigmentation. Int J Biochem. 19:1141–1147. 1987. View Article : Google Scholar : PubMed/NCBI
|
7
|
Bentley NJ, Eisen T and Goding CR:
Melanocyte-specific expression of the human tyrosinase promoter:
activation by the microphthalmia gene product and role of the
initiator. Mol Cell Biol. 14:7996–8006. 1994.PubMed/NCBI
|
8
|
Buscà R and Ballotti R: Cyclic AMP a key
messenger in the regulation of skin pigmentation. Pigment Cell Res.
13:60–69. 2000.PubMed/NCBI
|
9
|
Saito H, Yasumoto K, Takeda K, Takahashi
K, Yamamoto H and Shibahara S: Microphthalmia-associated
transcription factor in the Wnt signaling pathway. Pigment Cell
Res. 16:261–265. 2003. View Article : Google Scholar : PubMed/NCBI
|
10
|
Widlund HR and Fisher DE:
Microphthalamia-associated transcription factor: a critical
regulator of pigment cell development and survival. Oncogene.
22:3035–3041. 2003. View Article : Google Scholar : PubMed/NCBI
|
11
|
Koo JH, Kim HT, Yoon HY, et al: Effect of
xanthohumol on melanogenesis in B16 melanoma cells. Exp Mol Med.
40:313–319. 2008. View Article : Google Scholar : PubMed/NCBI
|
12
|
Jiang Z, Li S, Liu Y, Deng P, Huang J and
He G: Sesamin induces melanogenesis by microphthalmia-associated
transcription factor and tyrosinase up-regulation via cAMP
signaling pathway. Acta Biochim Biophys Sin (Shanghai). 43:763–770.
2011. View Article : Google Scholar : PubMed/NCBI
|
13
|
Hamid MA, Sarmidi MR and Park CS:
Mangosteen leaf extract increases melanogenesis in B16F1 melanoma
cells by stimulating tyrosinase activity in vitro and by
up-regulating tyrosinase gene expression. Int J Mol Med.
29:209–217. 2012.PubMed/NCBI
|
14
|
Oka M, Nagai H, Ando H, et al: Regulation
of melanogenesis through phosphatidylinositol 3-kinase-Akt pathway
in human G361 melanoma cells. J Invest Dermatol. 115:699–703. 2000.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Kim DS, Kim SY, Chung JH, Kim KH, Eun HC
and Park KC: Delayed ERK activation by ceramide reduces melanin
synthesis in human melanocytes. Cell Signal. 14:779–785. 2002.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Villareal MO, Han J, Matsuyama K, et al:
Lupenone from Erica multiflora leaf extract stimulates
melanogenesis in B16 murine melanoma cells through the inhibition
of ERK1/2 activation. Planta Med. 79:236–243. 2013.
|
17
|
Galus R, Niderla J, Sladowski D, Sajjad E,
Włodarski K and Jóźwiak J: Fluvastatin increases tyrosinase
synthesis induced by alpha-melanocyte-stimulating hormone in B16F10
melanoma cells. Pharmacol Rep. 62:164–169. 2010. View Article : Google Scholar
|
18
|
Grimes PE: New insights and new therapies
in vitiligo. JAMA. 293:730–735. 2005. View Article : Google Scholar : PubMed/NCBI
|
19
|
Moreira CG, Horinouchi CD, Souza-Filho CS,
et al: Hyperpigmentant activity of leaves and flowers extracts of
Pyrostegia venusta on murine B16F10 melanoma. J
Ethnopharmacol. 141:1005–1011. 2012. View Article : Google Scholar : PubMed/NCBI
|
20
|
Chaabane F, Pinon A, Simon A, Ghedira K
and Chekir-Ghedira L: Phytochemical potential of Daphne
gnidium in inhibiting growth of melanoma cells and enhancing
melanogenesis of B16-F0 melanoma. Cell Biochem Funct. 31:460–467.
2013. View
Article : Google Scholar
|
21
|
Maotian W, Xiongtai G, Xiuwen H and
Shanhai H: A new triterpenoid saponin from Ardisia crenata.
Planta Med. 58:205–207. 1992. View Article : Google Scholar
|
22
|
Jia Z, Koike K, Ohmoto T and Ni M:
Triterpenoid saponins from Ardisia crenata. Phytochemistry.
37:1389–1396. 1994. View Article : Google Scholar
|
23
|
Wang X, Tang S, Zhai H and Duan H: Studies
on anti-tumor metastatic constituents from Ardisia crenata.
Zhongguo Zhong Yao Za Zhi. 36:881–885. 2011.(In Chinese).
|
24
|
Zaima K, Deguchi J, Matsuno Y, Kaneda T,
Hirasawa Y and Morita H: Vasorelaxant effect of FR900359 from
Ardisia crenata on rat aortic artery. J Nat Med. 67:196–201.
2013. View Article : Google Scholar : PubMed/NCBI
|
25
|
Yao C, Oh JH, Oh IG, Park CH and Chung JH:
[6]-Shogaol inhibits melanogenesis in B16 mouse melanoma cells
through activation of the ERK pathway. Acta Pharmacol Sin.
34:289–294. 2013.
|
26
|
Buscà R, Bertolotto C, Ortonne JP and
Ballotti R: Inhibition of the phosphatidylinositol
3-kinase/p70(S6)-kinase pathway induces B16 melanoma cell
differentiation. J Biol Chem. 271:31824–31830. 1996.PubMed/NCBI
|
27
|
Englaro W, Bertolotto C, Buscà R, et al:
Inhibition of the mitogen-activated protein kinase pathway triggers
B16 melanoma cell differentiation. J Biol Chem. 273:9966–9970.
1998. View Article : Google Scholar : PubMed/NCBI
|
28
|
Cowley S, Paterson H, Kemp P and Marshall
CJ: Activation of MAP kinase kinase is necessary and sufficient for
PC12 differentiation and for transformation of NIH 3T3 cells. Cell.
77:841–852. 1994. View Article : Google Scholar : PubMed/NCBI
|
29
|
Sale EM, Atkinson PG and Sale GJ:
Requirement of MAP kinase for differentiation of fibroblasts to
adipocytes, for insulin activation of p90 S6 kinase and for insulin
or serum stimulation of DNA synthesis. EMBO J. 14:674–684.
1995.PubMed/NCBI
|
30
|
Wu M, Hemesath TJ, Takemoto CM, et al:
c-Kit triggers dual phosphorylations, which couple activation and
degradation of the essential melanocyte factor Mi. Genes Dev.
14:301–312. 2000.PubMed/NCBI
|
31
|
Ahmad S, Singh N and Glazer RI: Role of
AKT1 in 17beta-estradiol- and insulin-like growth factor I
(IGF-I)-dependent proliferation and prevention of apoptosis in
MCF-7 breast carcinoma cells. Biochem Pharmacol. 58:425–430. 1999.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Tang Y, Zhou H, Chen A, Pittman RN and
Field J: The Akt proto-oncogene links Ras to Pak and cell survival
signals. J Biol Chem. 275:9106–9109. 2000. View Article : Google Scholar : PubMed/NCBI
|
33
|
Khaled M, Larribere L, Bille K, Ortonne
JP, Ballotti R and Bertolotto C: Microphthalmia associated
transcription factor is a target of the
phosphatidylinositol-3-kinase pathway. J Invest Dermatol.
121:831–836. 2003. View Article : Google Scholar : PubMed/NCBI
|