1
|
Balaban RS, Nemoto S and Finkel T:
Mitochondria, oxidants, and aging. Cell. 120:483–495. 2005.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Waldbaum S and Patel M: Mitochondrial
dysfunction and oxidative stress: a contributing link to acquired
epilepsy? J Bioenerg Biomembr. 42:449–455. 2010. View Article : Google Scholar : PubMed/NCBI
|
3
|
Dröse S and Brandt U: Molecular mechanisms
of superoxide production by the mitochondrial respiratory chain.
Adv Exp Med Biol. 748:145–169. 2012.
|
4
|
Han YX, Lin YT, Xu JJ, et al: Status
epilepticus stimulates peroxisome proliferator-activated receptor γ
coactivator 1-α/mitochondrial antioxidant system pathway by a
nitric oxide-dependent mechanism. Neuroscience. 186:128–134.
2011.PubMed/NCBI
|
5
|
Wu Z and Boss O: Targeting PGC-1 alpha to
control energy homeostasis. Expert Opin Ther Targets. 11:1329–1338.
2007. View Article : Google Scholar : PubMed/NCBI
|
6
|
Rasbach KA and Schnellmann RG: PGC-1alpha
over-expression promotes recovery from mitochondrial dysfunction
and cell injury. Biochem Biophys Res Commun. 355:734–739. 2007.
View Article : Google Scholar
|
7
|
St-Pierre J, Drori S, Uldry M, Silvaggi JM
and Rhee J: Suppression of reactive oxygen species and
neurodegeneration by the PGC-1 transcriptional coactivators. Cell.
127:397–408. 2006. View Article : Google Scholar : PubMed/NCBI
|
8
|
Valle I, Alvarez-Barrientos A, Arza E,
Lamas S and Monsalve M: PGC-1αlpha regulates the mitochondrial
antioxidant defense system in vascular endothelial cells.
Cardiovasc Res. 66:562–573. 2005.
|
9
|
Csiszar A, Labinskyy N, Pinto JT, et al:
Resveratrol induces mitochondrial biogenesis in endothelial cells.
Am J Physiol Heart Circ Physiol. 297:H13–H20. 2009. View Article : Google Scholar : PubMed/NCBI
|
10
|
Sun AY, Wang Q, Simonyi A and Sun GY:
Resveratrol as a therapeutic agent for neurodegenerative diseases.
Mol Neurobiol. 41:375–383. 2010. View Article : Google Scholar : PubMed/NCBI
|
11
|
Houtkooper RH, Pirinen E and Auwerx J:
Sirtuins as regulators of metabolism and healthspan. Nat Rev Mol
Cell Biol. 13:225–238. 2012.PubMed/NCBI
|
12
|
Della-Morte D, Dave KR, DeFazio RA, et al:
Resveratrol pretreatment protects rat brain from cerebral ischemic
damage via a sirtuin 1-uncoupling protein 2 pathway. Neuroscience.
159:993–1002. 2009. View Article : Google Scholar
|
13
|
Nemoto S, Fergusson MM and Finkel T: SIRT1
functionally interacts with the metabolic regulator and
transcriptional coactivator PGC-1{alpha}. J Biol Chem.
280:16456–16460. 2005. View Article : Google Scholar : PubMed/NCBI
|
14
|
Racine RJ: Modification of seizure
activity by electrical stimulation. II Motor seizure.
Electroencephalogr Clin Neurophysiol. 32:281–294. 1972. View Article : Google Scholar : PubMed/NCBI
|
15
|
Udenigwe CC, Ramprasath VR, Aluko RE and
Jones PJ: Potential of resveratrol in anticancer and
anti-inflammatory therapy. Nutr Rev. 66:445–454. 2008. View Article : Google Scholar : PubMed/NCBI
|
16
|
Wang SJ, Bo QY, Zhao XH, et al:
Resveratrol pre-treatment reduces early inflammatory responses
induced by status epilepticus via mTOR signaling. Brain Res.
1492:122–129. 2013. View Article : Google Scholar : PubMed/NCBI
|
17
|
Kim D, Nguyen MD, Dobbin MM, et al: SIRT1
deacetylase protects against neurodegeneration in models for
Alzheimer’s disease and amyotrophic lateral sclerosis. EMBO J.
26:3169–3179. 2007.
|
18
|
Cantó C and Auwerx J: PGC-1alpha, SIRT1
and AMPK, an energy sensing network that controls energy
expenditure. Curr Opin Lipidol. 20:98–105. 2009.PubMed/NCBI
|
19
|
Rowe GC, Jiang A and Arany Z: PGC-1
coactivators in cardiac development and disease. Circ Res.
107:825–838. 2010. View Article : Google Scholar : PubMed/NCBI
|
20
|
Chen SD, Lin TK, Yang DI, et al:
Protective effects of peroxisome proliferator-activated receptors
gamma coactivator-1alpha against neuronal cell death in the
hippocampal CA1 subfield after transient global ischemia. J
Neurosci Res. 88:605–613. 2010.
|
21
|
Rubiolo JA, Mithieux G and Vega FV:
Resveratrol protects primary rat hepatocytes against oxidative
stress damage: activation of the Nrf2 transcription factor and
augmented activities of antioxidant enzymes. Eur J Pharmacol.
591:66–72. 2008. View Article : Google Scholar
|
22
|
Vincent AM, Russell JW, Sullivan KA, et
al: SOD2 protects neurons from injury in cell culture and animal
models of diabetic neuropathy. Exp Neurol. 208:216–227. 2007.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Fukui M and Zhu BT: Mitochondrial
superoxide dismutase SOD2, but not cytosolic SOD1, plays a critical
role in protection against glutamate-induced oxidative stress and
cell death in HT22 neuronal cells. Free Radic Biol Med. 48:821–830.
2010. View Article : Google Scholar
|
24
|
Andrews ZB, Horvath B, Barnstable CJ, et
al: Uncoupling protein-2 is critical for nigral dopamine cell
survival in a mouse model of Parkinson’s disease. J Neurosci.
25:184–191. 2005.PubMed/NCBI
|
25
|
Ho PW, Ho JW, Liu HF, et al: Mitochondrial
neuronal uncoupling proteins: a target for potential
disease-modification in Parkinson’s disease. Transl Neurodegener.
1:32012.PubMed/NCBI
|
26
|
Mehta SL and Li PA: Neuroprotective role
of mitochondrial uncoupling protein 2 in cerebral stroke. J Cereb
Blood Flow Metab. 29:1069–1078. 2009. View Article : Google Scholar : PubMed/NCBI
|
27
|
Bordone L, Motta MC, Picard F, et al:
Sirt1 regulates insulin secretion by repressing UCP2 in pancreatic
beta cells. PLoS Biol. 4:e312006. View Article : Google Scholar : PubMed/NCBI
|
28
|
Kong X, Wang R, Xue Y, et al: Sirtuin 3, a
new target of PGC-1alpha, plays an important role in the
suppression of ROS and mitochondrial biogenesis. PLoS One.
5:e117072010. View Article : Google Scholar : PubMed/NCBI
|