1
|
Lusis AJ: Atherosclerosis. Nature.
407:233–241. 2000. View
Article : Google Scholar : PubMed/NCBI
|
2
|
Maxfield FR and Tabas I: Role of
cholesterol and lipid organization in disease. Nature. 438:612–621.
2005. View Article : Google Scholar : PubMed/NCBI
|
3
|
Rader DJ, Alexander ET, Weibel GL,
Billheimer J and Rothblat GH: The role of reverse cholesterol
transport in animals and humans and relationship to
atherosclerosis. J Lipid Res. 50(Suppl): S189–194. 2009. View Article : Google Scholar : PubMed/NCBI
|
4
|
Rosenson RS, Brewer HB Jr, Chapman MJ,
Fazio S, Hussain MM, Kontush A, Krauss RM, Otvos JD, Remaley AT and
Schaefer EJ: HDL measures, particle heterogeneity, proposed
nomenclature, and relation to atherosclerotic cardiovascular
events. Clin Chem. 57:392–410. 2011. View Article : Google Scholar
|
5
|
Lewis GF and Rader DJ: New insights into
the regulation of HDL metabolism and reverse cholesterol transport.
Circ Res. 96:1221–1232. 2005. View Article : Google Scholar : PubMed/NCBI
|
6
|
Rosenson RS, Brewer HB Jr, Davidson WS,
Fayad ZA, Fuster V, Goldstein J, Hellerstein M, Jiang XC, Phillips
MC, Rader DJ, et al: Cholesterol efflux and atheroprotection:
advancing the concept of reverse cholesterol transport.
Circulation. 125:1905–1919. 2012. View Article : Google Scholar : PubMed/NCBI
|
7
|
Khera AV, Cuchel M, de la Llera-Moya M,
Rodrigues A, Burke MF, Jafri K, French BC, Phillips JA, Mucksavage
ML, Wilensky RL, et al: Cholesterol efflux capacity, high-density
lipoprotein function, and atherosclerosis. N Engl J Med.
364:127–135. 2011. View Article : Google Scholar : PubMed/NCBI
|
8
|
Yu XH, Fu YC, Zhang DW, Yin K and Tang CK:
Foam cells in atherosclerosis. Clin Chim Acta. 424:245–252. 2013.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Hu YW, Wang Q, Ma X, Li XX, Liu XH, Xiao
J, Liao DF, Xiang J and Tang CK: TGF-beta1 up-regulates expression
of ABCA1, ABCG1 and SR-BI through liver X receptor alpha signaling
pathway in THP-1 macrophage-derived foam cells. J Atheroscler
Thromb. 17:493–502. 2010. View
Article : Google Scholar : PubMed/NCBI
|
10
|
Ni ZL, Zhao SP and Wu Z: ABCG1 - a
potential therapeutic target for atherosclerosis. Med Hypotheses.
69:214–217. 2007. View Article : Google Scholar : PubMed/NCBI
|
11
|
Zhao C and Dahlman-Wright K: Liver X
receptor in cholesterol metabolism. J Endocrinol. 204:233–240.
2010. View Article : Google Scholar : PubMed/NCBI
|
12
|
Tang SL, Chen WJ, Yin K, Zhao GJ, Mo ZC,
Lv YC, Ouyang XP, Yu XH, Kuang HJ, Jiang ZS, et al: PAPP-A
negatively regulates ABCA1, ABCG1 and SR-B1 expression by
inhibiting LXRα through the IGF-I-mediated signaling pathway.
Atherosclerosis. 222:344–354. 2012.PubMed/NCBI
|
13
|
Woo YC, Xu A, Wang Y and Lam KS:
Fibroblast growth factor 21 as an emerging metabolic regulator:
clinical perspectives. Clin Endocrinol (Oxf). 78:489–496. 2013.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Kharitonenkov A, Shiyanova TL, Koester A,
Ford AM, Micanovic R, Galbreath EJ, Sandusky GE, Hammond LJ, Moyers
JS, Owens RA, et al: FGF-21 as a novel metabolic regulator. J Clin
Invest. 115:1627–1635. 2005. View
Article : Google Scholar : PubMed/NCBI
|
15
|
Wente W, Efanov AM, Brenner M,
Kharitonenkov A, Köster A, Sandusky GE, Sewing S, Treinies I,
Zitzer H and Gromada J: Fibroblast growth factor-21 improves
pancreatic beta-cell function and survival by activation of
extracellular signal-regulated kinase 1/2 and Akt signaling
pathways. Diabetes. 55:2470–2478. 2006. View Article : Google Scholar : PubMed/NCBI
|
16
|
Xu J, Stanislaus S, Chinookoswong N, Lau
YY, Hager T, Patel J, Ge H, Weiszmann J, Lu SC, Graham M, et al:
Acute glucose-lowering and insulin-sensitizing action of FGF21 in
insulin-resistant mouse models - association with liver and adipose
tissue effects. Am J Physiol Endocrinol Metab. 297:E1105–E1114.
2009. View Article : Google Scholar
|
17
|
Hotta Y, Nakamura H, Konishi M, Murata Y,
Takagi H, Matsumura S, Inoue K, Fushiki T and Itoh N: Fibroblast
growth factor 21 regulates lipolysis in white adipose tissue but is
not required for ketogenesis and triglyceride clearance in liver.
Endocrinology. 150:4625–4633. 2009. View Article : Google Scholar : PubMed/NCBI
|
18
|
Inagaki T, Lin VY, Goetz R, Mohammadi M,
Mangelsdorf DJ and Kliewer SA: Inhibition of growth hormone
signaling by the fasting-induced hormone FGF21. Cell Metab.
8:77–83. 2008. View Article : Google Scholar : PubMed/NCBI
|
19
|
Coskun T, Bina HA, Schneider MA, Dunbar
JD, Hu CC, Chen Y, Moller DE and Kharitonenkov A: Fibroblast growth
factor 21 corrects obesity in mice. Endocrinology. 149:6018–6027.
2008. View Article : Google Scholar : PubMed/NCBI
|
20
|
Kharitonenkov A, Wroblewski VJ, Koester A,
Chen YF, Clutinger CK, Tigno XT, Hansen BC, Shanafelt AB and Etgen
GJ: The metabolic state of diabetic monkeys is regulated by
fibroblast growth factor-21. Endocrinology. 148:774–781. 2007.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Ma AZ, Zhang Q and Song ZY: TNFa alter
cholesterol metabolism in human macrophages via PKC-θ-dependent
pathway. BMC Biochem. 14:202013.PubMed/NCBI
|
22
|
Chen SG, Xiao J, Liu XH, Liu MM, Mo ZC,
Yin K, Zhao GJ, Jiang J, Cui LB, Tan CZ, et al: Ibrolipim increases
ABCA1/G1 expression by the LXRα signaling pathway in THP-1
macrophage-derived foam cells. Acta Pharmacol Sin. 31:1343–1349.
2010.
|
23
|
Yan JQ, Tan CZ, Wu JH, Zhang DC, Chen JL,
Zeng BY, Jiang YP, Nie J, Liu W, Liu Q, et al: Neopterin negatively
regulates expression of ABCA1 and ABCG1 by the LXRα signaling
pathway in THP-1 macrophage-derived foam cells. Mol Cell Biochem.
379:123–131. 2013.PubMed/NCBI
|
24
|
Jessup W, Gelissen IC, Gaus K and
Kritharides L: Roles of ATP binding cassette transporters A1 and
G1, scavenger receptor BI and membrane lipid domains in cholesterol
export from macrophages. Curr Opin Lipidol. 17:247–257. 2006.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Sharrett AR, Ballantyne CM, Coady SA,
Heiss G, Sorlie PD, Catellier D and Patsch W: Coronary heart
disease prediction from lipoprotein cholesterol levels,
triglycerides, lipoprotein(a), apolipoproteins A-I and B, and HDL
density subfractions: The Atherosclerosis Risk in Communities
(ARIC) Study. Circulation. 104:1108–1113. 2001. View Article : Google Scholar
|
26
|
Gordon DJ and Rifkind BM: High-density
lipoprotein - the clinical implications of recent studies. N Engl J
Med. 321:1311–1316. 1989. View Article : Google Scholar : PubMed/NCBI
|
27
|
Otocka-Kmiecik A, Mikhailidis DP, Nicholls
SJ, Davidson M, Rysz J and Banach M: Dysfunctional HDL: a novel
important diagnostic and therapeutic target in cardiovascular
disease? Prog Lipid Res. 51:314–324. 2012. View Article : Google Scholar : PubMed/NCBI
|
28
|
Meurs I, Van Eck M and Van Berkel TJ:
High-density lipoprotein: key molecule in cholesterol efflux and
the prevention of atherosclerosis. Curr Pharm Des. 16:1445–1467.
2010. View Article : Google Scholar : PubMed/NCBI
|