1
|
Zhang Q, Skepper JN, Yang F, et al:
Nesprins: a novel family of spectrin-repeat-containing proteins
that localize to the nuclear membrane in multiple tissues. J Cell
Sci. 114:4485–4498. 2001.PubMed/NCBI
|
2
|
Apel ED, Lewis RM, Grady RM and Sanes JR:
Syne-1, a dystrophin- and Klarsicht-related protein associated with
synaptic nuclei at the neuromuscular junction. J Biol Chem.
275:31986–31995. 2000. View Article : Google Scholar : PubMed/NCBI
|
3
|
Lammerding J, Schulze PC, Takahashi T, et
al: Lamin A/C deficiency causes defective nuclear mechanics and
mechanotransduction. J Clin Invest. 113:370–378. 2004. View Article : Google Scholar : PubMed/NCBI
|
4
|
Zhang Q, Ragnauth CD, Skepper JN, et al:
Nesprin-2 is a multi-isomeric protein that binds lamin and emerin
at the nuclear envelope and forms a subcellular network in skeletal
muscle. J Cell Sci. 118(Pt 4): 673–687. 2005. View Article : Google Scholar
|
5
|
Pittenger MF, Mackay AM, Beck SC, et al:
Multilineage potential of adult human mesenchymal stem cells.
Science. 284:143–147. 1999. View Article : Google Scholar : PubMed/NCBI
|
6
|
Minguell JJ, Erices A and Conget P:
Mesenchymal stem cells. Exp Biol Med (Maywood). 226:507–520.
2001.PubMed/NCBI
|
7
|
Devine SM: Mesenchymal stem cells: will
they have a role in the clinic? J Cell Biochem Suppl. 38:73–79.
2002. View Article : Google Scholar : PubMed/NCBI
|
8
|
Nagaya N, Fujii T, Iwase T, et al:
Intravenous administration of mesenchymal stem cells improves
cardiac function in rats with acute myocardial infarction through
angiogenesis and myogenesis. Am J Physiol Heart Circ Physiol.
287:H2670–H2676. 2004. View Article : Google Scholar
|
9
|
Miyahara Y, Nagaya N, Kataoka M, et al:
Monolayered mesenchymal stem cells repair scarred myocardium after
myocardial infarction. Nat Med. 12:459–465. 2006. View Article : Google Scholar : PubMed/NCBI
|
10
|
Nagaya N, Kangawa K, Itoh T, et al:
Transplantation of mesenchymal stem cells improves cardiac function
in a rat model of dilated cardiomyopathy. Circulation.
112:1128–1135. 2005. View Article : Google Scholar : PubMed/NCBI
|
11
|
Chedrawy EG, Wang JS, Nguyen DM, et al:
Incorporation and integration of implanted myogenic and stem cells
into native myocardial fibers: anatomic basis for functional
improvements. J Thorac Cardiovasc Surg. 124:584–590. 2002.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Min JY, Sandmann S, Meissner A, et al:
Differential effects of mibefradil, verapamil, and amlodipine on
myocardial function and intracellular Ca(2+) handling in rats with
chronic myocardial infarction. J Pharmacol Exp Ther. 291:1038–1044.
1999.PubMed/NCBI
|
13
|
Chomczynski P and Sacchi N: Single-step
method of RNA isolation by acid guanidinium
thiocyanate-phenol-chloroform extraction. Anal Biochem.
162:156–159. 1987. View Article : Google Scholar : PubMed/NCBI
|
14
|
Martina JD1, Simmons C and Jukic DM:
High-definition hematoxylin and eosin staining in a transition to
digital pathology. J Pathol Inform. 2:452011. View Article : Google Scholar : PubMed/NCBI
|
15
|
Friedenstein AJ, Petrakova KV, Kurolesova
AI, et al: Heterotopic transplants of bone marrow. Analysis of
precursor cells for osteogenic and hematopoietic tissues.
Transplantation. 6:230–247. 1968. View Article : Google Scholar : PubMed/NCBI
|
16
|
Dennis JE and Charbord P: Origin and
differentiation of human and murine stroma. Stem Cells. 20:205–214.
2002. View Article : Google Scholar : PubMed/NCBI
|
17
|
Campagnoli C, Roberts IA, Kumar S, et al:
Identification of mesenchymal stem/progenitor cells in human
first-trimester fetal blood, liver, and bone marrow. Blood.
98:2396–2402. 2001. View Article : Google Scholar : PubMed/NCBI
|
18
|
Martin DR, Cox NR, Hathcock TL, et al:
Isolation and characterization of multipotential mesenchymal stem
cells from feline bone marrow. Exp Hematol. 30:879–886. 2002.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Wakitani S, Saito T and Caplan AI:
Myogenic cells derived from rat bone marrow mesenchymal stem cells
exposed to 5-azacytidine. Muscle Nerve. 18:1417–1426. 1995.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Dominici M, Le Blanc K, Mueller I, et al:
Minimal criteria for defining multipotent mesenchymal stromal
cells. The International Society for Cellular Therapy position
statement. Cytotherapy. 8:315–317. 2006. View Article : Google Scholar
|
21
|
Xu W, Zhang X, Qian H, et al: Mesenchymal
stem cells from adult human bone marrow differentiate into a
cardiomyocyte phenotype in vitro. Exp Biol Med (Maywood).
229:623–631. 2004.PubMed/NCBI
|
22
|
Makino S, Fukuda K, Miyoshi S, et al:
Cardiomyocytes can be generated from marrow stromal cells in vitro.
J Clin Invest. 103:697–705. 1999. View
Article : Google Scholar : PubMed/NCBI
|
23
|
Toma C, Pittenger MF, Cahill KS, et al:
Human mesenchymal stem cells differentiate to a cardiomyocyte
phenotype in the adult murine heart. Circulation. 105:93–98. 2002.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Yoon J, Min BG, Kim YH, et al:
Differentiation, engraftment and functional effects of pre-treated
mesenchymal stem cells in a rat myocardial infarct model. Acta
Cardiol. 60:277–284. 2005. View Article : Google Scholar : PubMed/NCBI
|
25
|
Xie XJ, Wang JA, Cao J and Zhong X:
Differentiation of bone marrow mesenchymal stem cells induced by
myocardial medium under hypoxic conditions. Acta Pharmacol Sin.
27:1153–1158. 2006. View Article : Google Scholar : PubMed/NCBI
|
26
|
Forte G, Minieri M, Cossa P, et al:
Hepatocyte growth factor effects on mesenchymal stem cells:
proliferation, migration, and differentiation. Stem Cells.
24:23–33. 2006. View Article : Google Scholar : PubMed/NCBI
|
27
|
Li W, Ma N, Ong LL, et al: Bcl-2
engineered MSCs inhibited apoptosis and improved heart function.
Stem Cells. 25:2118–2127. 2007. View Article : Google Scholar : PubMed/NCBI
|
28
|
Hu X, Wang J, Chen J, et al: Optimal
temporal delivery of bone marrow mesenchymal stem cells in rats
with myocardial infarction. Eur J Cardiothorac Surg. 31:438–443.
2007. View Article : Google Scholar : PubMed/NCBI
|
29
|
Mislow JM, Holaska JM, Kim MS, et al:
Nesprin-1alpha self-associates and binds directly to emerin and
lamin A in vitro. FEBS Lett. 525:135–140. 2002. View Article : Google Scholar : PubMed/NCBI
|
30
|
Mislow JM, Kim MS, Davis DB, et al:
Myne-1, a spectrin repeat transmembrane protein of the myocyte
inner nuclear membrane, interacts with lamin A/C. J Cell Sci.
115(Pt 1): 61–70. 2002.PubMed/NCBI
|
31
|
Starr DA and Han M: Role of ANC-1 in
tethering nuclei to the actin cytoskeleton. Science. 298:406–409.
2002. View Article : Google Scholar : PubMed/NCBI
|
32
|
Starr DA and Han M: ANChors away: an actin
based mechanism of nuclear positioning. J Cell Sci. 116(Pt 2):
211–216. 2003. View Article : Google Scholar : PubMed/NCBI
|
33
|
Gough LL, Fan J, Chu S, et al: Golgi
localization of Syne-1. Mol Biol Cell. 14:2410–2424. 2003.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Zhang Q, Ragnauth C, Greener MJ, et al:
The nesprins are giant actin-binding proteins, orthologous to
Drosophila melanogaster muscle protein MSP-300. Genomics.
80:473–481. 2002. View Article : Google Scholar : PubMed/NCBI
|
35
|
Pare GC, Easlick JL, Mislow JM, et al:
Nesprin-1alpha contributes to the targeting of mAKAP to the cardiac
myocyte nuclear envelope. Exp Cell Res. 303:388–399. 2005.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Puckelwartz MJ, Kessler EJ, Kim G, et al:
Nesprin-1 mutations in human and murine cardiomyopathy. J Mol Cell
Cardiol. 48:600–608. 2010. View Article : Google Scholar : PubMed/NCBI
|
37
|
Randles KN, Lam le T, Sewry CA, et al:
Nesprins, but not sun proteins, switch isoforms at the nuclear
envelope during muscle development. Dev Dyn. 239:998–1009. 2010.
View Article : Google Scholar : PubMed/NCBI
|