1
|
Williams AR and Hare JM: Mesenchymal stem
cells: biology, pathophysiology, translational findings, and
therapeutic implications for cardiac disease. Circ Res.
109:923–940. 2011. View Article : Google Scholar
|
2
|
Musumeci G, Lo Furno D, Loreto C, et al:
Mesenchymal stem cells from adipose tissue which have been
differentiated into chondrocytes in three-dimensional culture
express lubricin. Exp Biol Med (Maywood). 236:1333–1341. 2011.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Matsushita K, Morello F, Wu Y, et al:
Mesenchymal stem cells differentiate into renin-producing
juxtaglomerular (JG)-like cells under the control of liver X
receptor-alpha. J Biol Chem. 285:11974–11982. 2010. View Article : Google Scholar : PubMed/NCBI
|
4
|
Johnson TV, Bull ND, Hunt DP, et al:
Neuroprotective effects of intravitreal mesenchymal stem cell
transplantation in experimental glaucoma. Invest Ophthalmol Vis
Sci. 51:2051–2059. 2010. View Article : Google Scholar : PubMed/NCBI
|
5
|
Weiss ML, Medicetty S, Bledsoe AR, et al:
Human umbilical cord matrix stem cells: preliminary
characterization and effect of transplantation in a rodent model of
Parkinson’s disease. Stem Cells. 24:781–792. 2006.PubMed/NCBI
|
6
|
Tsai PC, Fu TW, Chen YM, et al: The
therapeutic potential of human umbilical mesenchymal stem cells
from Wharton’s jelly in the treatment of rat liver fibrosis. Liver
Transpl. 15:484–495. 2009.
|
7
|
Lund RD, Wang S, Lu B, et al: Cells
isolated from umbilical cord tissue rescue photoreceptors and
visual functions in a rodent model of retinal disease. Stem Cells.
25:602–611. 2007. View Article : Google Scholar : PubMed/NCBI
|
8
|
Liao W, Xie J, Zhong J, et al: Therapeutic
effect of human umbilical cord multipotent mesenchymal stromal
cells in a rat model of stroke. Transplantation. 87:350–359. 2009.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Boregowda SV and Phinney DG: Therapeutic
applications of mesenchymal stem cells: current outlook. BioDrugs.
26:201–208. 2012. View Article : Google Scholar : PubMed/NCBI
|
10
|
Atoui R, Shum-Tim D and Chiu RC:
Myocardial regenerative therapy: immunologic basis for the
potential ‘universal donor cells’. Ann Thorac Surg. 86:327–334.
2008.PubMed/NCBI
|
11
|
Aggarwal S and Pittenger MF: Human
mesenchymal stem cells modulate allogeneic immune cell responses.
Blood. 105:1815–1822. 2005. View Article : Google Scholar : PubMed/NCBI
|
12
|
Chen YT, Sun CK, Lin YC, et al:
Adipose-derived mesenchymal stem cell protects kidneys against
ischemia-reperfusion injury through suppressing oxidative stress
and inflammatory reaction. J Transl Med. 9:512011. View Article : Google Scholar
|
13
|
Subbanna PK: Mesenchymal stem cells for
treating GVHD: in-vivo fate and optimal dose. Med Hypotheses.
69:469–470. 2007. View Article : Google Scholar : PubMed/NCBI
|
14
|
Laschober GT, Brunauer R, Jamnig A, et al:
Age-specific changes of mesenchymal stem cells are paralleled by
upregulation of CD106 expression as a response to an inflammatory
environment. Rejuvenation Res. 14:119–131. 2011. View Article : Google Scholar : PubMed/NCBI
|
15
|
Lee OK, Kuo TK, Chen WM, et al: Isolation
of multipotent mesenchymal stem cells from umbilical cord blood.
Blood. 103:1669–1675. 2004. View Article : Google Scholar : PubMed/NCBI
|
16
|
Huang da W, Sherman BT and Lempicki RA:
Systematic and integrative analysis of large gene lists using DAVID
bioinformatics resources. Nat Protoc. 4:44–57. 2009.PubMed/NCBI
|
17
|
Li J, Li D, Liu X, Tang S and Wei F: Human
umbilical cord mesenchymal stem cells reduce systemic inflammation
and attenuate LPS-induced acute lung injury in rats. J Inflamm
(Lond). 9:332012. View Article : Google Scholar : PubMed/NCBI
|
18
|
Justesen J, Stenderup K, Eriksen EF and
Kassem M: Maintenance of osteoblastic and adipocytic
differentiation potential with age and osteoporosis in human marrow
stromal cell cultures. Calcif Tissue Int. 71:36–44. 2002.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Stenderup K, Justesen J, Clausen C and
Kassem M: Aging is associated with decreased maximal life span and
accelerated senescence of bone marrow stromal cells. Bone.
33:919–926. 2003. View Article : Google Scholar : PubMed/NCBI
|
20
|
Tokalov SV, Gruener S, Schindler S, et al:
A number of bone marrow mesenchymal stem cells but neither
phenotype nor differentiation capacities changes with age of rats.
Mol Cells. 24:255–260. 2007.PubMed/NCBI
|
21
|
von Zglinicki T and Martin-Ruiz CM:
Telomeres as biomarkers for ageing and age-related diseases. Curr
Mol Med. 5:197–203. 2005.
|
22
|
Olovnikov AM: A theory of marginotomy. The
incomplete copying of template margin in enzymic synthesis of
polynucleotides and biological significance of the phenomenon. J
Theor Biol. 41:181–190. 1973.PubMed/NCBI
|
23
|
Hayflick L: Mortality and immortality at
the cellular level. A review. Biochemistry (Mosc). 62:1180–1190.
1997.PubMed/NCBI
|
24
|
Campisi J and d‘Adda di Fagagna F:
Cellular senescence: when bad things happen to good cells. Nat Rev
Mol Cell Biol. 8:729–740. 2007. View
Article : Google Scholar : PubMed/NCBI
|
25
|
Toussaint O, Medrano EE and von Zglinicki
T: Cellular and molecular mechanisms of stress-induced premature
senescence (SIPS) of human diploid fibroblasts and melanocytes. Exp
Gerontol. 35:927–945. 2000. View Article : Google Scholar : PubMed/NCBI
|
26
|
Serrano M and Blasco MA: Putting the
stress on senescence. Curr Opin Cell Biol. 13:748–753. 2001.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Banfi A, Muraglia A, Dozin B, et al:
Proliferation kinetics and differentiation potential of ex vivo
expanded human bone marrow stromal cells: Implications for their
use in cell therapy. Exp Hematol. 28:707–715. 2000. View Article : Google Scholar : PubMed/NCBI
|
28
|
Baxter MA, Wynn RF, Jowitt SN, et al:
Study of telomere length reveals rapid aging of human marrow
stromal cells following in vitro expansion. Stem Cells. 22:675–682.
2004. View Article : Google Scholar : PubMed/NCBI
|
29
|
Hall A and Nobes CD: Rho GTPases:
molecular switches that control the organization and dynamics of
the actin cytoskeleton. Philos Trans R Soc Lond B Biol Sci.
355:965–970. 2000. View Article : Google Scholar : PubMed/NCBI
|
30
|
Kao G, Huang CC, Hedgecock EM, Hall DH and
Wadsworth WG: The role of the laminin beta subunit in laminin
heterotrimer assembly and basement membrane function and
development in C elegans. Dev Biol. 290:211–219. 2006.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Kadler KE, Hill A and Canty-Laird EG:
Collagen fibrillogenesis: fibronectin, integrins, and minor
collagens as organizers and nucleators. Curr Opin Cell Biol.
20:495–501. 2008. View Article : Google Scholar : PubMed/NCBI
|
32
|
Meisel R, Zibert A, Laryea M, et al: Human
bone marrow stromal cells inhibit allogeneic T-cell responses by
indoleamine 2,3-dioxygenase-mediated tryptophan degradation. Blood.
103:4619–4621. 2004. View Article : Google Scholar : PubMed/NCBI
|
33
|
Sato K, Ozaki K, Oh I, et al: Nitric oxide
plays a critical role in suppression of T-cell proliferation by
mesenchymal stem cells. Blood. 109:228–234. 2007. View Article : Google Scholar : PubMed/NCBI
|
34
|
Batten P, Sarathchandra P, Antoniw JW, et
al: Human mesenchymal stem cells induce T cell anergy and
downregulate T cell allo-responses via the TH2 pathway: relevance
to tissue engineering human heart valves. Tissue Eng. 12:2263–2273.
2006. View Article : Google Scholar : PubMed/NCBI
|
35
|
Groh ME, Maitra B, Szekely E and Koç ON:
Human mesenchymal stem cells require monocyte-mediated activation
to suppress alloreactive T cells. Exp Hematol. 33:928–934. 2005.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Bunnell BA, Betancourt AM and Sullivan DE:
New concepts on the immune modulation mediated by mesenchymal stem
cells. Stem Cell Res Ther. 1:342010. View
Article : Google Scholar : PubMed/NCBI
|
37
|
Zhang Q, Shi S, Liu Y, et al: Mesenchymal
stem cells derived from human gingiva are capable of
immunomodulatory functions and ameliorate inflammation-related
tissue destruction in experimental colitis. J Immunol.
183:7787–7798. 2009. View Article : Google Scholar
|
38
|
Niedbala W, Cai B and Liew FY: Role of
nitric oxide in the regulation of T cell functions. Ann Rheum Dis.
65(Suppl 3): iii37–iii40. 2006. View Article : Google Scholar : PubMed/NCBI
|
39
|
Couper KN, Blount DG and Riley EM: IL-10:
the master regulator of immunity to infection. J Immunol.
180:5771–5777. 2008. View Article : Google Scholar : PubMed/NCBI
|
40
|
Otterbein LE and Choi AM: Heme oxygenase:
colors of defense against cellular stress. Am J Physiol Lung Cell
Mol Physiol. 279:L1029–1037. 2000.PubMed/NCBI
|
41
|
Chauveau C, Rémy S, Royer PJ, et al: Heme
oxygenase-1 expression inhibits dendritic cell maturation and
proinflammatory function but conserves IL-10 expression. Blood.
106:1694–1702. 2005. View Article : Google Scholar : PubMed/NCBI
|
42
|
Chabannes D, Hill M, Merieau E, et al: A
role for heme oxygenase-1 in the immunosuppressive effect of adult
rat and human mesenchymal stem cells. Blood. 110:3691–3694. 2007.
View Article : Google Scholar : PubMed/NCBI
|
43
|
Bach FH: Heme oxygenase-1: a therapeutic
amplification funnel. FASEB J. 19:1216–1219. 2005. View Article : Google Scholar : PubMed/NCBI
|
44
|
Toussaint O, Remacle J, Dierick JF, et al:
From the Hayflick mosaic to the mosaics of ageing. Role of
stress-induced premature senescence in human ageing. Int J Biochem
Cell Biol. 34:1415–1429. 2002. View Article : Google Scholar : PubMed/NCBI
|
45
|
Derynck R, Akhurst RJ and Balmain A:
TGF-beta signaling in tumor suppression and cancer progression. Nat
Genet. 29:117–129. 2001. View Article : Google Scholar : PubMed/NCBI
|
46
|
Djouad F, Charbonnier LM, Bouffi C, et al:
Mesenchymal stem cells inhibit the differentiation of dendritic
cells through an interleukin-6-dependent mechanism. Stem Cells.
25:2025–2032. 2007. View Article : Google Scholar : PubMed/NCBI
|
47
|
Singh T and Newman AB: Inflammatory
markers in population studies of aging. Ageing Res Rev. 10:319–329.
2011. View Article : Google Scholar : PubMed/NCBI
|
48
|
Ryu E, Hong S, Kang J, et al:
Identification of senescence-associated genes in human bone marrow
mesenchymal stem cells. Biochem Biophys Res Commun. 371:431–436.
2008. View Article : Google Scholar : PubMed/NCBI
|
49
|
Zhan Q, Lord KA, Alamo I Jr, et al: The
gadd and MyD genes define a novel set of mammalian genes encoding
acidic proteins that synergistically suppress cell growth. Mol Cell
Biol. 14:2361–2371. 1994. View Article : Google Scholar : PubMed/NCBI
|