1
|
Bataller R and Brenner DA: Liver fibrosis.
J Clin Invest. 115:209–218. 2005. View
Article : Google Scholar : PubMed/NCBI
|
2
|
Moreira RK: Hepatic stellate cells and
liver fibrosis. Arch Pathol Lab Med. 131:1728–1734. 2007.PubMed/NCBI
|
3
|
Bartel DP: MicroRNAs: genomics,
biogenesis, mechanism, and function. Cell. 116:281–297. 2004.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Wiggins JF, Ruffino L, Kelnar K, et al:
Development of a lung cancer therapeutic based on the tumor
suppressor microRNA-34. Cancer Res. 70:5923–5930. 2010. View Article : Google Scholar : PubMed/NCBI
|
5
|
Raisch J, Darfeuille-Michaud A and Nguyen
HT: Role of microRNAs in the immune system, inflammation and
cancer. World J Gastroenterol. 19:2985–2996. 2013. View Article : Google Scholar : PubMed/NCBI
|
6
|
Vettori S, Gay S and Distler O: Role of
MicroRNAs in Fibrosis. Open Rheumatol J. 6:130–139. 2012.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Noetel A, Kwiecinski M, Elfimova N, Huang
J and Odenthal M: microRNA are central players in anti- and
profibrotic gene regulation during liver fibrosis. Front Physiol.
3:492012. View Article : Google Scholar : PubMed/NCBI
|
8
|
Katayama Y, Maeda M, Miyaguchi K, et al:
Identification of pathogenesis-related microRNAs in hepatocellular
carcinoma by expression profiling. Oncol Lett. 4:817–823.
2012.PubMed/NCBI
|
9
|
He L, He X, Lim LP, et al: A microRNA
component of the p53 tumour suppressor network. Nature.
447:1130–1134. 2007. View Article : Google Scholar : PubMed/NCBI
|
10
|
Chen F and Hu SJ: Effect of microRNA-34a
in cell cycle, differentiation, and apoptosis: a review. J Biochem
Mol Toxicol. 26:79–86. 2012. View Article : Google Scholar
|
11
|
Trang P, Wiggins JF, Daige CL, et al:
Systemic delivery of tumor suppressor microRNA mimics using a
neutral lipid emulsion inhibits lung tumors in mice. Mol Ther.
19:1116–1122. 2011. View Article : Google Scholar : PubMed/NCBI
|
12
|
Pang RT, Leung CO, Lee CL, et al:
MicroRNA-34a is a tumor suppressor in choriocarcinoma via
regulation of Delta-like1. BMC Cancer. 13:252013. View Article : Google Scholar : PubMed/NCBI
|
13
|
Yan K, Gao J, Yang T, et al: MicroRNA-34a
inhibits the proliferation and metastasis of osteosarcoma cells
both in vitro and in vivo. PLoS One. 7:e337782012. View Article : Google Scholar : PubMed/NCBI
|
14
|
Pogribny IP, Starlard-Davenport A,
Tryndyak VP, et al: Difference in expression of hepatic microRNAs
miR-29c, miR-34a, miR-155, and miR-200b is associated with
strain-specific susceptibility to dietary nonalcoholic
steatohepatitis in mice. Lab Invest. 90:1437–1446. 2010. View Article : Google Scholar : PubMed/NCBI
|
15
|
Li WQ, Chen C, Xu MD, et al: The
rno-miR-34 family is upregulated and targets ACSL1 in
dimethylnitrosamine-induced hepatic fibrosis in rats. FEBS J.
278:1522–1532. 2011. View Article : Google Scholar : PubMed/NCBI
|
16
|
Guo CJ, Pan Q, Li DG, Sun H and Liu BW:
miR-15b and miR-16 are implicated in activation of the rat hepatic
stellate cell: An essential role for apoptosis. J Hepatol.
50:766–778. 2009. View Article : Google Scholar : PubMed/NCBI
|
17
|
Murakami Y, Toyoda H, Tanaka M, et al: The
progression of liver fibrosis is related with overexpression of the
miR-199 and 200 families. PLoS One. 6:e160812011. View Article : Google Scholar : PubMed/NCBI
|
18
|
Kota J, Chivukula RR, O’Donnell KA, et al:
Therapeutic microRNA delivery suppresses tumorigenesis in a murine
liver cancer model. Cell. 137:1005–1017. 2009. View Article : Google Scholar : PubMed/NCBI
|
19
|
Hazra S, Xiong S, Wang J, et al:
Peroxisome proliferator-activated receptor gamma induces a
phenotypic switch from activated to quiescent hepatic stellate
cells. J Biol Chem. 279:11392–11401. 2004. View Article : Google Scholar : PubMed/NCBI
|
20
|
Sharvit E, Abramovitch S, Reif S and Bruck
R: Amplified inhibition of stellate cell activation pathways by
PPAR-γ, RAR and RXR agonists. PLoS One. 8:e765412013. View Article : Google Scholar
|
21
|
Attia YM, Elalkamy EF, Hammam OA, Mahmoud
SS and El-Khatib AS: Telmisartan, an AT1 receptor blocker and a
PPAR gamma activator, alleviates liver fibrosis induced
experimentally by Schistosoma mansoni infection. Parasit Vectors.
6:1992013. View Article : Google Scholar : PubMed/NCBI
|
22
|
Bruck R, Weiss S, Aeed H, Pines M, Halpern
Z and Zvibel I: Additive inhibitory effect of experimentally
induced hepatic cirrhosis by agonists of peroxisome proliferator
activator receptor gamma and retinoic acid receptor. Dig Dis Sci.
54:292–299. 2009. View Article : Google Scholar
|
23
|
Zhang F, Kong D, Lu Y and Zheng S:
Peroxisome proliferator-activated receptor-γ as a therapeutic
target for hepatic fibrosis: from bench to bedside. Cell Mol Life
Sci. 70:259–276. 2012. View Article : Google Scholar
|
24
|
Guo GH, Tan DM, Zhu PA and Liu F:
Hepatitis B virus X protein promotes proliferation and upregulates
TGF-beta1 and CTGF in human hepatic stellate cell line, LX-2.
Hepatobiliary Pancreat Dis Int. 8:59–64. 2009.PubMed/NCBI
|
25
|
Weiskirchen R and Gressner AM: Isolation
and culture of hepatic stellate cells. Methods Mol Med. 117:99–113.
2005.PubMed/NCBI
|
26
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
27
|
Mao CD and Byers SW: Cell-context
dependent TCF/LEF expression and function: alternative tales of
repression, de-repression and activation potentials. Crit Rev
Eukaryot Gene Expr. 21:207–236. 2011. View Article : Google Scholar : PubMed/NCBI
|
28
|
Cha YH, Kim NH, Park C, Lee I, Kim HS and
Yook JI: MiRNA-34 intrinsically links p53 tumor suppressor and Wnt
signaling. Cell Cycle. 11:1273–1281. 2012. View Article : Google Scholar : PubMed/NCBI
|
29
|
Busser B, Sancey L, Brambilla E, Coll JL
and Hurbin A: The multiple roles of amphiregulin in human cancer.
Biochim Biophys Acta. 1816:119–131. 2011.PubMed/NCBI
|
30
|
Lee AH, Scapa EF, Cohen DE and Glimcher
LH: Regulation of hepatic lipogenesis by the transcription factor
XBP1. Science. 320:1492–1496. 2008. View Article : Google Scholar : PubMed/NCBI
|
31
|
Hanhoff T, Lücke C and Spener F: Insights
into binding of fatty acids by fatty acid binding proteins. Mol
Cell Biochem. 239:45–54. 2002. View Article : Google Scholar : PubMed/NCBI
|
32
|
Kaller M, Liffers ST, Oeljeklaus S, et al:
Genome-wide characterization of miR-34a induced changes in protein
and mRNA expression by a combined pulsed SILAC and microarray
analysis. Mol Cell Proteomics. 10:M111.010462. 2011. View Article : Google Scholar : PubMed/NCBI
|
33
|
Marra F, Efsen E, Romanelli RG, et al:
Ligands of peroxisome proliferator-activated receptor gamma
modulate profibrogenic and proinflammatory actions in hepatic
stellate cells. Gastroenterology. 119:466–78. 2000. View Article : Google Scholar : PubMed/NCBI
|
34
|
Inagaki Y and Okazaki I: Emerging insights
into transforming growth factor beta Smad signal in hepatic
fibrogenesis. Gut. 56:284–292. 2007. View Article : Google Scholar : PubMed/NCBI
|
35
|
Yang S, Li Y, Gao J, et al: MicroRNA-34
suppresses breast cancer invasion and metastasis by directly
targeting Fra-1. Oncogene. 32:4294–4303. 2013. View Article : Google Scholar
|
36
|
Castro RE, Ferreira DM, Afonso MB, et al:
miR-34a/SIRT1/p53 is suppressed by ursodeoxycholic acid in the rat
liver and activated by disease severity in human non-alcoholic
fatty liver disease. J Hepatol. 58:119–125. 2013. View Article : Google Scholar
|
37
|
Meng F, Glaser SS, Francis H, et al:
Epigenetic regulation of miR-34a expression in alcoholic liver
injury. Am J Pathol. 181:804–817. 2012. View Article : Google Scholar : PubMed/NCBI
|
38
|
Pineau P, Volinia S, McJunkin K, et al:
miR-221 overexpression contributes to liver tumorigenesis. Proc
Natl Acad Sci USA. 107:264–269. 2009. View Article : Google Scholar : PubMed/NCBI
|
39
|
Qian J, Niu M, Zhai X, Zhou Q and Zhou Y:
β-Catenin pathway is required for TGF-beta1 inhibition of PPARγ
expression in cultured hepatic stellate cells. Pharmacol Res.
66:219–225. 2012. View Article : Google Scholar : PubMed/NCBI
|