1
|
Field KM, Drummond KJ, Yilmaz M, Tacey M,
Compston D, Gibbs P and Rosenthal MA: Clinical trial participation
and outcome for patients with glioblastoma: multivariate analysis
from a comprehensive dataset. J Clin Neurosci. 20:783–789. 2013.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Koshkin PA, Chistiakov DA and Chekhonin
VP: Role of microRNAs in mechanisms of glioblastoma resistance to
radio- and chemotherapy. Biochemistry (Mosc). 78:325–334. 2013.
View Article : Google Scholar
|
3
|
Shevde LA, Das S, Clark DW and Samant RS:
Osteopontin: an effector and an effect of tumor metastasis. Curr
Mol Med. 10:71–81. 2010. View Article : Google Scholar : PubMed/NCBI
|
4
|
Matusan-Ilijas K, Behrem S, Jonjic N,
Zarkovic K and Lucin K: Osteopontin expression correlates with
angiogenesis and survival in malignant astrocytoma. Pathol Oncol
Res. 14:293–298. 2008. View Article : Google Scholar : PubMed/NCBI
|
5
|
Toy H, Yavas O, Eren O, Genc M and Yavas
C: Correlation between osteopontin protein expression and
histological grade of astrocytomas. Pathol Oncol Res. 15:203–207.
2009. View Article : Google Scholar
|
6
|
Atai NA, Bansal M, Lo C, Bosman J,
Tigchelaar W, Bosch KS, Jonker A, De Witt Hamer PC, Troost D,
McCulloch CA, Everts V, Van Noorden CJ and Sodek J: Osteopontin is
up-regulated and associated with neutrophil and macrophage
infiltration in glioblastoma. Immunology. 132:39–48. 2011.
View Article : Google Scholar :
|
7
|
Yan W, Qian C, Zhao P, Zhang J, Shi L,
Qian J, Liu N, Fu Z, Kang C, Pu P and You Y: Expression pattern of
osteopontin splice variants and its functions on cell apoptosis and
invasion in glioma cells. Neuro Oncol. 12:765–775. 2010. View Article : Google Scholar : PubMed/NCBI
|
8
|
Rothwarf DM, Zandi E, Natoli G and Karin
M: IKK-gamma is an essential regulatory subunit of IkappaB kinase
complex. Nature. 395:297–300. 1998. View
Article : Google Scholar : PubMed/NCBI
|
9
|
Liu R, Tan J, Lin Y, Jia R, Yang W, Liang
C, Geng Y and Qiao W: HIV-1 Vpr activates both canonical and
noncanonical NF-κB pathway by enhancing the phosphorylation of
IKKα/β. Virology. 439:47–56. 2013. View Article : Google Scholar : PubMed/NCBI
|
10
|
Li Z, Guo Y, Jiang H, Zhang T, Jin C,
Young CY and Yuan H: Differential regulation of MMPs by E2F1, Sp1
and NF-kappa B controls the small cell lung cancer invasive
phenotype. BMC Cancer. 14:2762014. View Article : Google Scholar : PubMed/NCBI
|
11
|
Li F, Huang L, Su XL, Gu QH and Hu CP:
Inhibition of nuclear factor-κB activity enhanced chemosensitivity
to cisplatin in human lung adeno-carcinoma A549 cells under
chemical hypoxia conditions. Chin Med J (Engl). 126:3276–3782.
2013.
|
12
|
Fuke Y, Hishinuma M, Namikawa M, Oishi Y
and Matsuzaki T: Wasabi-derived 6-(methylsulfinyl)hexyl
isothiocyanate induces apoptosis in human breast cancer by possible
involvement of the NF-κB pathways. Nutr Cancer. 66:879–887. 2014.
View Article : Google Scholar
|
13
|
Wang Y, Zhou Y, Jia G, Han B, Liu J, Teng
Y, Lv J, Song Z, Li Y, Ji L, Pan S, Jiang H and Sun B: Shikonin
suppresses tumor growth and synergizes with gemcitabine in a
pancreatic cancer xenograft model: Involvement of NF-κB signaling
pathway. Biochem Pharmacol. 88:322–333. 2014. View Article : Google Scholar : PubMed/NCBI
|
14
|
Du QH, Xu YB, Zhang MY, Yun P and He CY:
Propofol induces apoptosis and increases gemcitabine sensitivity in
pancreatic cancer cells in vitro by inhibition of nuclear factor-κB
activity. World J Gastroenterol. 19:5485–5492. 2013. View Article : Google Scholar : PubMed/NCBI
|
15
|
Wang H, Wang H, Zhang W, Huang HJ, Liao WS
and Fuller GN: Analysis of the activation status of Akt, NFkappaB,
and Stat3 in human diffuse gliomas. Lab Invest. 84:941–951. 2004.
View Article : Google Scholar : PubMed/NCBI
|
16
|
McFarland BC, Hong SW, Rajbhandari R,
Twitty GB Jr, Gray GK, Yu H, Benveniste EN and Nozell SE:
NF-κB-induced IL-6 ensures STAT3 activation and tumor
aggressiveness in glioblastoma. PLoS One. 8:e787282013. View Article : Google Scholar
|
17
|
Bonavia R, Inda MM, Vandenberg S, Cheng
SY, Nagane M, Hadwiger P, Tan P, Sah DW, Cavenee WK and Furnari FB:
EGFRvIII promotes glioma angiogenesis and growth through the NF-κB,
interleukin-8 pathway. Oncogene. 31:4054–4066. 2012. View Article : Google Scholar
|
18
|
Yin BL, Hao H, Wang YY, Jiang YJ and Xue
S: Downregulating osteopontin reduces angiotensin II-induced
inflammatory activation in vascular smooth muscle cells. Inflamm
Res. 58:67–73. 2009. View Article : Google Scholar : PubMed/NCBI
|
19
|
Dumitru CA, Weller M and Gulbins E:
Ceramide metabolism determines glioma cell resistance to
chemotherapy. J Cell Physiol. 221:688–695. 2009. View Article : Google Scholar : PubMed/NCBI
|
20
|
Courter D, Cao H, Kwok S, Kong C, Banh A,
Kuo P, Bouley DM, Vice C, Brustugun OT, Denko NC, Koong AC, Giaccia
A and Le QT: The RGD domain of human osteopontin promotes tumor
growth and metastasis through activation of survival pathways. PLoS
One. 5:e96332010. View Article : Google Scholar : PubMed/NCBI
|
21
|
Khan SA, Lopez-Chua CA, Zhang J, Fisher
LW, Sørensen ES and Denhardt DT: Soluble osteopontin inhibits
apoptosis of adherent endothelial cells deprived of growth factors.
J Cell Biochem. 85:728–736. 2002. View Article : Google Scholar : PubMed/NCBI
|
22
|
Song G, Ming Y, Mao Y, Bao S and Ouyang G:
Osteopontin prevents curcumin-induced apoptosis and promotes
survival through Akt activation via alpha v beta 3 integrins in
human gastric cancer cells. Exp Biol Med (Maywood). 233:1537–1545.
2008. View Article : Google Scholar
|
23
|
Malaguarnera L: Implications of apoptosis
regulators in tumorigenesis. Cancer Metastasis Rev. 23:367–387.
2004. View Article : Google Scholar : PubMed/NCBI
|
24
|
Arlt A and Schäfer H: NFkappaB-dependent
chemoresistance in solid tumors. Int J Clin Pharmacol Ther.
40:336–347. 2002. View
Article : Google Scholar : PubMed/NCBI
|
25
|
Thomas RP, Farrow BJ, Kim S, May MJ,
Hellmich MR and Evers BM: Selective targeting of the nuclear
factor-kappaB pathway enhances tumor necrosis factor-related
apoptosis-inducing ligand-mediated pancreatic cancer cell death.
Surgery. 132:127–134. 2002. View Article : Google Scholar : PubMed/NCBI
|
26
|
Dhandapani KM, Mahesh VB and Brann DW:
Curcumin suppresses growth and chemoresistance of human
glioblastoma cells via AP-1 and NFkappaB transcription factors. J
Neurochem. 102:522–538. 2007. View Article : Google Scholar : PubMed/NCBI
|
27
|
Jani TS, DeVecchio J, Mazumdar T, Agyeman
A and Houghton JA: Inhibition of NF-kappaB signaling by quinacrine
is cytotoxic to human colon carcinoma cell lines and is synergistic
in combination with tumor necrosis factor-related
apoptosis-inducing ligand (TRAIL) or oxaliplatin. J Biol Chem.
285:19162–19172. 2010. View Article : Google Scholar : PubMed/NCBI
|
28
|
Hannun YA: Apoptosis and the dilemma of
cancer chemotherapy. Blood. 89:1845–1853. 1997.PubMed/NCBI
|
29
|
Guensberg P, Wacheck V, Lucas T, Monia B,
Pehamberger H, Eichler HG and Jansen B: Bcl-xL antisense
oligonucleotides chemosensitize human glioblastoma cells.
Chemotherapy. 48:189–195. 2002. View Article : Google Scholar : PubMed/NCBI
|
30
|
Gielen PR, Aftab Q, Ma N, Chen VC, Hong X,
Lozinsky S, Naus CC and Sin WC: Connexin43 confers Temozolomide
resistance in human glioma cells by modulating the mitochondrial
apoptosis pathway. Neuropharmacology. 75:539–548. 2013. View Article : Google Scholar : PubMed/NCBI
|
31
|
Fennell DA: Bcl-2 as a target for
overcoming chemoresistance in small-cell lung cancer. Clin Lung
Cancer. 4:307–313. 2003. View Article : Google Scholar : PubMed/NCBI
|
32
|
Heckman CA, Mehew JW and Boxer LM:
NF-kappaB activates Bcl-2 expression in t(14;18) lymphoma cells.
Oncogene. 21:3898–3908. 2002. View Article : Google Scholar : PubMed/NCBI
|
33
|
Fahy BN, Schlieman MG, Mortenson MM,
Virudachalam S and Bold RJ: Targeting Bcl-2 overexpression in
various human malignancies through NF-kappaB inhibition by the
proteasome inhibitor bortezomib. Cancer Chemother Pharmacol.
56:46–54. 2005. View Article : Google Scholar : PubMed/NCBI
|