1
|
Tipping AJ, Mahon FX, Zafirides G, et al:
Drug responses of imatinib mesylate-resistant cells: synergism of
imatinib with other chemotherapeutic drugs. Leukemia. 16:2349–2357.
2002. View Article : Google Scholar : PubMed/NCBI
|
2
|
Capdeville R, Silberman S and Dimitrijevic
S: Imatinib: the first 3 years. Eur J Cancer. 38:S77–S82. 2002.
View Article : Google Scholar
|
3
|
Daley GQ, Van Etten RA and Baltimore D:
Induction of chronic myelogenous leukemia in mice by the
P210bcr/abl gene of the Philadelphia chromosome. Science.
247:824–830. 1990. View Article : Google Scholar : PubMed/NCBI
|
4
|
Cohen MH, Williams G, Johnson JR, et al:
Approval summary for imatinib mesylate capsules in the treatment of
chronic myelogenous leukemia. Clin Cancer Res. 8:935–942.
2002.PubMed/NCBI
|
5
|
Champagne MA, Capdeville R, Krailo M, et
al: Imatinib mesylate (STI571) for treatment of children with
Philadelphia chromosome-positive leukemia: results from a
Children’s Oncology Group phase 1 study. Blood. 104:2655–2660.
2004. View Article : Google Scholar : PubMed/NCBI
|
6
|
Druker BJ, Tamura S, Buchdunger E, et al:
Effects of a selective inhibitor of the Abl tyrosine kinase on the
growth of Bcr-Abl positive cells. Nat Med. 2:561–566. 1996.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Druker BJ, Talpaz M, Resta DJ, et al:
Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine
kinase in chronic myeloid leukemia. N Engl J Med. 344:1031–1037.
2001. View Article : Google Scholar : PubMed/NCBI
|
8
|
Grigg A and Hughes T: Role of allogeneic
stem cell transplantation for adult chronic myeloid leukemia in the
imatinib era. Biol Blood Marrow Transplant. 12:795–807. 2006.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Millot F, Guilhot J, Nelken B, et al:
Imatinib mesylate is effective in children with chronic myelogenous
leukemia in late chronic and advanced phase and in relapse after
stem cell transplantation. Leukemia. 20:187–192. 2006. View Article : Google Scholar
|
10
|
Roy L, Guilhot J, Krahnke T, et al:
Survival advantage from imatinib compared with the combination
interferon-alpha plus cytarabine in chronic-phase chronic
myelogenous leukemia: historical comparison between two phase 3
trials. Blood. 108:1478–1484. 2006. View Article : Google Scholar : PubMed/NCBI
|
11
|
Hobernicht SL, Schweiger B, Zeitler P,
Wang M and Hunger SP: Acquired growth hormone deficiency in a girl
with chronic myelogenous leukemia treated with tyrosine kinase
inhibitor therapy. Pediatr Blood Cancer. 56:671–673. 2011.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Shima H, Tokuyama M, Tanizawa A, et al:
Distinct impact of imatinib on growth at prepubertal and pubertal
ages of children with chronic myeloid leukemia. J Pediatr.
159:676–681. 2011. View Article : Google Scholar : PubMed/NCBI
|
13
|
Berman E, Nicolaides M, Maki RG, et al:
Altered bone and mineral metabolism in patients receiving imatinib
mesylate. N Engl J Med. 354:2006–2013. 2006. View Article : Google Scholar : PubMed/NCBI
|
14
|
Fierro F, Illmer T, Jing D, et al:
Inhibition of platelet-derived growth factor receptorbeta by
imatinib mesylate suppresses proliferation and alters
differentiation of human mesenchymal stem cells in vitro. Cell
Prolif. 40:355–366. 2007. View Article : Google Scholar : PubMed/NCBI
|
15
|
Fitter S, Dewar AL, Kostakis P, et al:
Long-term imatinib therapy promotes bone formation in CML patients.
Blood. 111:2538–2547. 2008. View Article : Google Scholar
|
16
|
Schmid H, Jaeger BA, Lohse J and Suttorp
M: Longitudinal growth retardation in a prepuberal girl with
chronic myeloid leukemia on long-term treatment with imatinib.
Haematologica. 94:1177–1179. 2009. View Article : Google Scholar : PubMed/NCBI
|
17
|
Suttorp M, Yaniv I and Schultz KR:
Controversies in the treatment of CML in children and adolescents:
TKIs versus BMT? Biol Blood Marrow Transplant. 17:S115–S122. 2011.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Kimoto T, Inoue M and Kawa K: Growth
deceleration in a girl treated with imatinib. Int J Hematol.
89:251–252. 2009. View Article : Google Scholar : PubMed/NCBI
|
19
|
Mariani S, Giona F, Basciani S, Brama M
and Gnessi L: Low bone density and decreased inhibin-B/FSH ratio in
a boy treated with imatinib during puberty. Lancet. 372:111–112.
2008. View Article : Google Scholar : PubMed/NCBI
|
20
|
Jaeger BA, Tauer JT, Ulmer A, et al:
Changes in bone metabolic parameters in children with chronic
myeloid leukemia on imatinib treatment. Med Sci Monit.
18:CR721–CR728. 2012. View Article : Google Scholar : PubMed/NCBI
|
21
|
Lehmann B, Sauter W, Knuschke P, Dressler
S and Meurer M: Demonstration of UVB-induced synthesis of 1 alpha,
25-dihydroxyvitamin D3 (calcitriol) in human skin by microdialysis.
Arch Dermatol Res. 295:24–28. 2003.PubMed/NCBI
|
22
|
Lehmann B and Meurer M: Vitamin D
metabolism. Dermatol Ther. 23:2–12. 2010. View Article : Google Scholar : PubMed/NCBI
|
23
|
Holick MF: Vitamin D deficiency. N Engl J
Med. 357:266–281. 2007. View Article : Google Scholar : PubMed/NCBI
|
24
|
Holick MF: Resurrection of vitamin D
deficiency and rickets. J Clin Invest. 116:2062–2072. 2006.
View Article : Google Scholar : PubMed/NCBI
|
25
|
DeLuca HF: Overview of general physiologic
features and functions of vitamin D. Am J Clin Nutr.
80:1689S–1696S. 2004.PubMed/NCBI
|
26
|
Lehmann B: HaCaT cell line as a model
system for vitamin D3 metabolism in human skin. J Invest Dermatol.
108:78–82. 1997. View Article : Google Scholar : PubMed/NCBI
|
27
|
Bogh MK, Schmedes AV, Philipsen PA,
Thieden E and Wulf HC: Interdependence between body surface area
and ultraviolet B dose in vitamin D production: a randomized
controlled trial. Br J Dermatol. 164:163–169. 2011. View Article : Google Scholar
|
28
|
Kremer R, Campbell PP, Reinhardt T and
Gilsanz V: Vitamin D status and its relationship to body fat, final
height, and peak bone mass in young women. J Clin Endocrinol Metab.
94:67–73. 2009. View Article : Google Scholar :
|
29
|
Davis CD and Dwyer JT: The ‘sunshine
vitamin’: benefits beyond bone? J Natl Cancer Inst. 99:1563–1565.
2007. View Article : Google Scholar : PubMed/NCBI
|
30
|
Mathieu C and Badenhoop K: Vitamin D and
type 1 diabetes mellitus: state of the art. Trends Endocrinol
Metab. 16:261–266. 2005. View Article : Google Scholar : PubMed/NCBI
|
31
|
Pettifor JM: Rickets and vitamin D
deficiency in children and adolescents. Endocrinol Metab Clin North
Am. 34:537–553. 2005. View Article : Google Scholar : PubMed/NCBI
|
32
|
Schuster I, Egger H, Herzig G, Reddy GS,
Schmidt JA, Schüssler M and Vorisek G: Selective inhibitors of
vitamin D metabolism - new concepts and perspectives. Anticancer
Res. 26:2653–2668. 2006.PubMed/NCBI
|
33
|
Tibullo D, Giallongo C, La Cava P, et al:
Effects of imatinib mesylate in osteoblastogenesis. Exp Hematol.
37:461–468. 2009. View Article : Google Scholar : PubMed/NCBI
|
34
|
O’Sullivan S, Naot D, Callon K, et al:
Imatinib promotes osteoblast differentiation by inhibiting PDGFR
signaling and inhibits osteoclastogenesis by both direct and
stromal cell-dependent mechanisms. J Bone Miner Res. 22:1679–1689.
2007. View Article : Google Scholar
|
35
|
Dewar AL, Zannettino AC, Hughes TP and
Lyons AB: Inhibition of c-fms by imatinib: expanding the spectrum
of treatment. Cell Cycle. 4:851–853. 2005. View Article : Google Scholar : PubMed/NCBI
|
36
|
Dewar AL, Cambareri AC, Zannettino AC, et
al: Macrophage colony-stimulating factor receptor c-fms is a novel
target of imatinib. Blood. 105:3127–3132. 2005. View Article : Google Scholar : PubMed/NCBI
|
37
|
Dewar AL, Domaschenz RM, Doherty KV,
Hughes TP and Lyons AB: Imatinib inhibits the in vitro development
of the monocyte/macrophage lineage from normal human bone marrow
progenitors. Leukemia. 17:1713–1721. 2003. View Article : Google Scholar : PubMed/NCBI
|
38
|
Owen S, Hatfield A and Letvak L: Imatinib
and altered bone and mineral metabolism. N Engl J Med. 355:627–629.
2006. View Article : Google Scholar : PubMed/NCBI
|
39
|
O’Sullivan S, Horne A, Wattie D, et al:
Decreased bone turnover despite persistent secondary
hyperparathyroidism during prolonged treatment with imatinib. J
Clin Endocrinol Metab. 94:1131–1136. 2009. View Article : Google Scholar
|
40
|
El Hajj Dib I, Gallet M, Mentaverri R, et
al: Imatinib mesylate (Gleevec) enhances mature osteoclast
apoptosis and suppresses osteoclast bone resorbing activity. Eur J
Pharmacol. 551:27–33. 2006. View Article : Google Scholar : PubMed/NCBI
|
41
|
Grey A, O’Sullivan S, Reid IR and Browett
P: Imatinib mesylate, increased bone formation, and secondary
hyperparathyroidism. N Engl J Med. 355:2494–2495. 2006. View Article : Google Scholar : PubMed/NCBI
|
42
|
Jönsson S, Olsson B, Ohlsson C, et al:
Increased cortical bone mineralization in imatinib treated patients
with chronic myelogenous leukemia. Haematologica. 93:1101–1103.
2008. View Article : Google Scholar : PubMed/NCBI
|
43
|
Vandyke K, Fitter S, Dewar AL, Hughes TP
and Zannettino AC: Dysregulation of bone remodeling by imatinib
mesylate. Blood. 115:766–774. 2010. View Article : Google Scholar
|
44
|
Genc DB, Ozkan MA and Buyukgebiz A:
Vitamin D in childhood cancer: a promising anticancer agent?
Pediatr Endocrinol Rev. 10:485–493. 2013.PubMed/NCBI
|
45
|
Helou M, Ning Y, Yang S, et al: Vitamin D
deficiency in children with cancer. J Pediatr Hematol Oncol.
36:212–217. 2014. View Article : Google Scholar
|
46
|
Mithal A, Wahl DA, Bonjour JP, et al:
Global vitamin D status and determinants of hypovitaminosis D.
Osteoporos Int. 20:1807–1820. 2009. View Article : Google Scholar : PubMed/NCBI
|
47
|
Lips P: Vitamin D status and nutrition in
Europe and Asia. J Steroid Biochem Mol Biol. 103:620–625. 2007.
View Article : Google Scholar : PubMed/NCBI
|
48
|
Xie Z, Munson SJ, Huang N, et al: The
mechanism of 1,25-dihydroxyvitamin D(3) autoregulation in
keratinocytes. J Biol Chem. 277:36987–36990. 2002. View Article : Google Scholar : PubMed/NCBI
|
49
|
Nguyen M, Boutignon H, Mallet E, et al:
Infantile hypercalcemia and hypercalciuria: new insights into a
vitamin D-dependent mechanism and response to ketoconazole
treatment. J Pediatr. 157:296–302. 2010. View Article : Google Scholar : PubMed/NCBI
|
50
|
Segersten U, Björklund P, Hellman P,
Akerström G and Westin G: Potentiating effects of nonactive/active
vitamin D analogues and ketoconazole in parathyroid cells. Clin
Endocrinol (Oxf). 66:399–404. 2007. View Article : Google Scholar
|
51
|
Schuster I, Egger H, Reddy GS and Vorisek
G: Combination of vitamin D metabolites with selective inhibitors
of vitamin D metabolism. Recent Results Cancer Res. 164:169–188.
2003. View Article : Google Scholar : PubMed/NCBI
|
52
|
Schuster I, Egger H, Nussbaumer P and
Kroemer RT: Inhibitors of vitamin D hydroxylases:
structure-activity relationships. J Cell Biochem. 88:372–380. 2003.
View Article : Google Scholar : PubMed/NCBI
|
53
|
Yee SW, Campbell MJ and Simons C:
Inhibition of Vitamin D3 metabolism enhances VDR signalling in
androgen-independent prostate cancer cells. J Steroid Biochem Mol
Biol. 98:228–235. 2006. View Article : Google Scholar : PubMed/NCBI
|
54
|
Peng B, Lloyd P and Schran H: Clinical
pharmacokinetics of imatinib. Clin Pharmacokinet. 44:879–894. 2005.
View Article : Google Scholar : PubMed/NCBI
|
55
|
Gupta RP, Hollis BW, Patel SB, Patrick KS
and Bell NH: CYP3A4 is a human microsomal vitamin D 25-hydroxylase.
J Bone Miner Res. 19:680–688. 2004. View Article : Google Scholar : PubMed/NCBI
|
56
|
Takeshita A, Taguchi M, Koibuchi N and
Ozawa Y: Putative role of the orphan nuclear receptor SXR (steroid
and xenobiotic receptor) in the mechanism of CYP3A4 inhibition by
xenobiotics. J Biol Chem. 277:32453–32458. 2002. View Article : Google Scholar : PubMed/NCBI
|
57
|
Dagher R, Cohen M, Williams G, et al:
Approval summary: imatinib mesylate in the treatment of metastatic
and/or unresectable malignant gastrointestinal stromal tumors. Clin
Cancer Res. 8:3034–3038. 2002.PubMed/NCBI
|
58
|
Cheng JB, Levine MA, Bell NH, Mangelsdorf
DJ and Russell DW: Genetic evidence that the human CYP2R1 enzyme is
a key vitamin D 25-hydroxylase. Proc Natl Acad Sci USA.
101:7711–7715. 2004. View Article : Google Scholar : PubMed/NCBI
|