1
|
Louis DN, Ohgaki H, Wiestler OD, et al:
The 2007 WHO classification of tumours of the central nervous
system. Acta Neuropathol. 114:97–109. 2007. View Article : Google Scholar : PubMed/NCBI
|
2
|
Yan H, Yang K, Xiao H, Zou YJ, Zhang WB
and Liu HY: Over-expression of cofilin-1 and phosphoglycerate
kinase 1 in astrocytomas involved in pathogenesis of
radioresistance. CNS Neurosci Ther. 18:729–736. 2012. View Article : Google Scholar : PubMed/NCBI
|
3
|
Bagheri-Yarmand R, Mazumdar A, Sahin AA
and Kumar R: LIM kinase 1 increases tumor metastasis of human
breast cancer cells via regulation of the urokinase-type
plasminogen activator system. Int J Cancer. 118:2703–2710. 2006.
View Article : Google Scholar
|
4
|
Bernstein BW and Bamburg JR: ADF/cofilin:
a functional node in cell biology. Trends Cell Biol. 20:187–195.
2010. View Article : Google Scholar : PubMed/NCBI
|
5
|
Hotulainen P and Hoogenraad CC: Actin in
dendritic spines: connecting dynamics to function. J Cell Biol.
189:619–629. 2010. View Article : Google Scholar : PubMed/NCBI
|
6
|
Yamaguchi H, Pixley F and Condeelis J:
Invadopodia and podosomes in tumor invasion. Eur J Cell Biol.
85:213–218. 2006. View Article : Google Scholar : PubMed/NCBI
|
7
|
Keezer SM, Ivie SE, Krutzsch HC, Tandle A,
Libutti SK and Roberts DD: Angiogenesis inhibitors target the
endothelial cell cytoskeleton through altered regulation of heat
shock protein 27 and cofilin. Cancer Res. 63:6405–6412.
2003.PubMed/NCBI
|
8
|
Francescone RA, Scully S, Faibish M, et
al: Role of YKL-40 in the angiogenesis, radioresistance, and
progression of glioblastoma. J Biol Chem. 286:15332–15343. 2011.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Wang J, Wakeman TP, Lathia JD, et al:
Notch promotes radioresistance of glioma stem cells. Stem cells.
28:17–28. 2010.
|
10
|
Chautard E, Loubeau G, Tchirkov A,
Chassagne J, Vermot-Desroches C, Morel L and Verrelle P: Akt
signaling pathway: a target for radiosensitizing human malignant
glioma. Neuro Oncol. 12:434–443. 2010.PubMed/NCBI
|
11
|
Fedrigo CA, Grivicich I, Schunemann DP, et
al: Radioresistance of human glioma spheroids and expression of
HSP70, p53 and EGFr. Radiat Oncol. 6:1562011. View Article : Google Scholar : PubMed/NCBI
|
12
|
Kessler J, Hahnel A, Wichmann H, Rot S,
Kappler M, Bache M and Vordermark D: HIF-1α inhibition by siRNA or
chetomin in human malignant glioma cells: effects on hypoxic
radioresistance and monitoring via CA9 expression. BMC Cancer.
10:6052010. View Article : Google Scholar
|
13
|
Naidu MD, Mason JM, Pica RV, Fung H and
Pena LA: Radiation resistance in glioma cells determined by DNA
damage repair activity of Ape1/Ref-1. J Radiat Res. 51:393–404.
2010. View Article : Google Scholar : PubMed/NCBI
|
14
|
Lin TY, Chang JT, Wang HM, et al:
Proteomics of the radioresistant phenotype in head-and-neck cancer:
Gp96 as a novel prediction marker and sensitizing target for
radiotherapy. Int J Radiation Oncology Biol Phys. 78:246–256. 2010.
View Article : Google Scholar
|
15
|
Clarke RH, Moosa S, Anzivino M, Wang Y,
Floyd DH, Purow BW and Lee KS: Sustained radiosensitization of
hypoxic glioma cells after oxygen pretreatment in an animal model
of glioblastoma and in vitro models of tumor hypoxia. PLoS One.
9:e1111992014. View Article : Google Scholar : PubMed/NCBI
|
16
|
Fiorentini G, Giovanis P, Rossi S, Dentico
P, Paola R, Turrisi G and Bernardeschi P: A phase II clinical study
on relapsed malignant gliomas treated with electro-hyperthermia. In
Vivo. 20:721–724. 2006.
|
17
|
Dashti SR, Spalding A, Kadner RI, Yao T,
Kumar A, Sun Da and LaRocca R: Targeted intraarterial anti-VEGF
therapy for medically refractory radiation necrosis in the brain. J
Neurosurg Pediatr. Oct 31–2014.(Epub ahead of print). PubMed/NCBI
|
18
|
Folkes LK and O’Neill P: Modification of
DNA damage mechanisms by nitric oxide during ionizing radiation.
Free Radic Biol Med. 58:14–25. 2013. View Article : Google Scholar : PubMed/NCBI
|
19
|
Manda K, Glasow A, Paape D and Hildebrandt
G: Effects of ionizing radiation on the immune system with special
emphasis on the interaction of dendritic and T cells. Front Oncol.
2:1022012. View Article : Google Scholar : PubMed/NCBI
|
20
|
Park E, Ahn G, Yun JS, et al: Dieckol
rescues mice from lethal irradiation by accelerating hemopoiesis
and curtailing immunosuppression. Int J Radiat Biol. 86:848–859.
2010.PubMed/NCBI
|
21
|
Chang HY, Shih MH, Huang HC, Tsai SR, Juan
HF and Lee SC: Middle infrared radiation induces G2/M cell cycle
arrest in A549 lung cancer cells. PLoS One. 8:e541172013.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Homma K, Niino Y, Hotta K and Oka K:
Ca(2+) influx through P2X receptors induces actin cytoskeleton
reorganization by the formation of cofilin rods in neurites. Mol
Cell Neurosci. 37:261–270. 2008. View Article : Google Scholar
|
23
|
Ashworth S, Teng B, Kaufeld J, et al:
Cofilin-1 inactivation leads to proteinuria-studies in zebrafish,
mice and humans. PLoS One. 5:el26262010. View Article : Google Scholar
|
24
|
Xu YL and Wang DB: Relationship between
cofilin-1 expression and implantation capacity in eutopic
endometrium of patient with endometriosis. Zhonghua Fu Chan Ke Za
Zhi. 45:252–255. 2010.PubMed/NCBI
|
25
|
Sidani M, Wessels D, Mouneimne G, et al:
Cofilin determines the migration behavior and turning frequency of
metastatic cancer cells. J Cell Bio. 179:777–791. 2007. View Article : Google Scholar
|
26
|
Lin CW, Yen ST, Chang HT, et al: Loss of
cofilin 1 disturbs actin dynamics, adhesion between enveloping and
deep cell layers and cell movements during gastrulation in
zebrafish. PLoS One. 5:e153312010. View Article : Google Scholar
|
27
|
Castro MA, Dal-Pizzol F, Zdanov S, et al:
CFL1 expression levels as a prognastic and drug resistanse marker
in nonsmall cell lung. Cancer. 116:3645–3655. 2010. View Article : Google Scholar : PubMed/NCBI
|
28
|
Spratley SJ, Bastea LI, Döppler H, Mizuno
K and Storz P: Protein kinase D regulates cofilin activity through
p21-activated kinase 4. J Biol Chem. 286:34254–34261. 2011.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Elliott CM, Stinner B and Venkataraman C:
Modelling cell motility and chemotaxis with evolving surface finite
elements. J R Soc Interface. 9:3027–3044. 2012. View Article : Google Scholar : PubMed/NCBI
|
30
|
Estornes Y, Gay F, Gevrey JC, et al:
Differential involvement of destrin and cofilin-1 in the control of
invasive properties of Isreco1 human colon cancer cells. Int J
Cancer. 121:2162–2171. 2007. View Article : Google Scholar : PubMed/NCBI
|
31
|
Ma Y, Wang B, Li W, et al: Intersectin1-s
is involved in migration and invasion of human glioma cells. J
Neurosci Res. 89:1079–1090. 2011. View Article : Google Scholar : PubMed/NCBI
|
32
|
Solbach TF, Konig J, Fromm MF and Zolk O:
ATP-binding cassette transporters in the heart. Trends Cardiovasc
Med. 16:7–15. 2006. View Article : Google Scholar : PubMed/NCBI
|
33
|
Zhang L, Luo J, Wan P, Wu J, Laski F and
Chen J: Regulation of cofilin phosphorylation and asymmetry in
collective cell migration during morphogenesis. Development.
138:455–464. 2011. View Article : Google Scholar : PubMed/NCBI
|
34
|
Vigil D, Kim TY, Plachco A, et al: ROCK1
and ROCK2 are required for non-small cell lung cancer
anchorage-independent growth and invasion. Cancer Res.
72:5338–5347. 2012. View Article : Google Scholar : PubMed/NCBI
|