1
|
Nemati S, Mojtahedi A, Naghavi SE, Banan R
and Zia F: Investigating Helicobacter pylori in nasal polyposis
using polymerase chain reaction, urease test and culture. Eur Arch
Otorhinolaryngol. 269:1457–1461. 2012. View Article : Google Scholar
|
2
|
Kong H, Dong Z, Guo Y, Yang Z and Bu G:
Intercellular adhesion molecule-1 and accumulation of eosinophils
in nasal polyp tissue. Chin Med J (Engl). 112:366–368. 1999.
|
3
|
Ponikau JU, Sherris DA, Kephart GM, et al:
Features of airway remodeling and eosinophilic inflammation in
chronic rhinosinusitis: is the histopathology similar to asthma? J
Allergy Clin Immunol. 112:877–882. 2003. View Article : Google Scholar : PubMed/NCBI
|
4
|
Fan GK, Wang H and Takenaka H: Eosinophil
infiltration and activation in nasal polyposis. Acta Otolaryngol.
127:521–526. 2007. View Article : Google Scholar : PubMed/NCBI
|
5
|
Eliashar R and Levi-Schaffer F: The role
of the eosinophil in nasal diseases. Curr Opin Otolaryngol Head
Neck Surg. 13:171–175. 2005. View Article : Google Scholar : PubMed/NCBI
|
6
|
Saitoh T, Kusunoki T, Yao T, et al:
Relationship between epithelial damage or basement membrane
thickness and eosinophilic infiltration in nasal polyps with
chronic rhinosinusitis. Rhinology. 47:275–279. 2009.PubMed/NCBI
|
7
|
Papon JF, Coste A, Gendron MC, et al:
HLA-DR and ICAM-1 expression and modulation in epithelial cells
from nasal polyps. Laryngoscope. 112:2067–2075. 2002. View Article : Google Scholar : PubMed/NCBI
|
8
|
Valera FC, Umezawa K, Brassesco MS, et al:
Suppression of inflammatory cytokine secretion by an NF-κB
inhibitor DHMEQ in nasal polyps fibroblasts. Cell Physiol Biochem.
30:13–22. 2012. View Article : Google Scholar
|
9
|
Grunig G, Marsh LM, Esmaeil N, Jackson K,
Gordon T, Reibman J, Kwapiszewska G and Park SH: Perspective:
ambient air pollution: inflammatory response and effects on the
lung’s vasculature. Pulm Circ. 4:25–35. 2014. View Article : Google Scholar : PubMed/NCBI
|
10
|
Koczy-Baron E and Kasperska-Zając A: The
role of vascular endothelial growth factor in inflammatory
processes. Postepy Hig Med Dosw (Online). 68:57–65. 2014.(In
Polish). View Article : Google Scholar
|
11
|
Bautista-Molano W, Romero-Sánchez C, De
Ávila J, Londoño J and Valle-Oñate R: Bone remodeling in
spondyloarthritis. Rev Med Chil. 141:1182–1189. 2013.(In Spanish).
View Article : Google Scholar
|
12
|
Berraies A, Hamzaoui K and Hamzaoui A:
Link between vitamin D and airway remodeling. J Asthma Allergy.
7:23–30. 2014.PubMed/NCBI
|
13
|
Hamid Q: Pathogenesis of small airways in
asthma. Respiration. 84:4–11. 2012. View Article : Google Scholar : PubMed/NCBI
|
14
|
Van Bruaene N and Bachert C: Tissue
remodeling in chronic rhinosinusitis. Curr Opin Allergy Clin
Immunol. 11:8–11. 2011. View Article : Google Scholar
|
15
|
Pawankar R and Nonaka M: Inflammatory
mechanisms and remodeling in chronic rhinosinusitis and nasal
polyps. Curr Allergy Asthma Rep. 7:202–208. 2007. View Article : Google Scholar : PubMed/NCBI
|
16
|
Royce SG, Cheng V, Samuel CS and Tang ML:
The regulation of fibrosis in airway remodeling in asthma. Mol Cell
Endocrinol. 351:167–175. 2012. View Article : Google Scholar : PubMed/NCBI
|
17
|
Rabago D, Guerard E and Bukstein D: Nasal
irrigation for chronic sinus symptoms in patients with allergic
rhinitis, asthma, and nasal polyposis: a hypothesis generating
study. WMJ. 107:69–75. 2008.PubMed/NCBI
|
18
|
Sun DI, Joo YH, Auo HJ and Kang JM:
Clinical significance of eosinophilic cationic protein levels in
nasal secretions of patients with nasal polyposis. Eur Arch
Otorhinolaryngol. 266:981–986. 2009. View Article : Google Scholar
|
19
|
Figueiredo CR, Silva ID and Weckx LL:
Inflammatory genes in nasal polyposis. Curr Opin Otolaryngol Head
Neck Surg. 16:18–21. 2008. View Article : Google Scholar : PubMed/NCBI
|
20
|
Pawliczak R, Lewandowska-Polak A and
Kowalski ML: Pathogenesis of nasal polyps: an update. Curr Allergy
Asthma. 5:463–471. 2005. View Article : Google Scholar
|
21
|
Tos M, Larsen PL and Moller K: Goblet cell
density in nasal polyps. Ann Otol Rhinol Laryngol. 99:310–315.
1990. View Article : Google Scholar : PubMed/NCBI
|
22
|
Kitapçi F, Muluk NB, Atasoy P and Koc C:
Role of mast and goblet cells in the pathogenesis of nasal polyps.
J Otolaryngol. 35:122–132. 2006. View Article : Google Scholar : PubMed/NCBI
|
23
|
Bernstein JM: Update on the molecular
biology of nasal polyposis. Otolaryngol Clin North Am.
38:1243–1255. 2005. View Article : Google Scholar : PubMed/NCBI
|
24
|
Pawankar R: Nasal polyposis: an update:
editorial review. Curr Opin Allergy Clin Immunol. 3:1–6. 2003.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Malekzadeh S, Hamburger MD, Whelan PJ,
Biedlingmaier JF and Baraniuk JN: Density of middle turbinate
subepithelial mucous glands in patients with chronic
rhinosinusitis. Otolaryngol Head Neck Surg. 127:190–195. 2002.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Boucherat O, Chakir J and Jeannotte L: The
loss of Hoxa5 function promotes Notch-dependent goblet cell
metaplasia in lung airways. Biol Open. 1:677–691. 2012. View Article : Google Scholar : PubMed/NCBI
|
27
|
Ren X, Shah TA, Ustiyan V, et al: FOXM1
promotes allergen-induced goblet cell metaplasia and pulmonary
inflammation. Mol Cell Biol. 33:371–386. 2013. View Article : Google Scholar :
|
28
|
Kahveci OK, Derekoy FS, Yilmaz M, Serteser
M and Altuntas A: The role of MMP-9 and TIMP-1 in nasal polyp
formation. Swiss Med Wkly. 138:684–688. 2008.PubMed/NCBI
|
29
|
Wang LF, Chien CY, Chiang FY, Chai CY and
Tai CF: Expression of matrix metalloproteinase-2 and matrix
metalloproteinase-9 in recurrent chronic rhinosinusitis with nasal
polyposis. Kaohsiung J Med Sci. 29:26–31. 2013. View Article : Google Scholar
|
30
|
Wang LF, Chien CY, Tai CF, Kuo WR, Hsi E
and Juo SH: Matrix metalloproteinase-9 gene polymorphisms in nasal
polyposis. BMC Med Genet. 11:852010. View Article : Google Scholar : PubMed/NCBI
|
31
|
Wang LF, Chien CY, Chiang FY, Chai CY and
Tai CF: Corelationship between matrix metalloproteinase 2 and 9
expression and severity of chronic rhinosinusitis with nasal
polyposis. Am J Rhinol Allergy. 26:e1–e4. 2012. View Article : Google Scholar : PubMed/NCBI
|
32
|
Jung J, Ko SH, Yoo do Y, et al:
5,7-Dihydroxy-3,4, 6-trimethoxyflavone inhibits intercellular
adhesion molecule 1 and vascular cell adhesion molecule 1 via the
Akt and nuclear factor-kappaB-dependent pathway, leading to
suppression of adhesion of monocytes and eosinophils to bronchial
epithelial cells. Immunology. 137:98–113. 2012. View Article : Google Scholar : PubMed/NCBI
|
33
|
Li J, Lau G, Chen L, et al: Interleukin 23
promotes hepatocellular carcinoma metastasis via NF-kappa B induced
matrix metalloproteinase 9 expression. PLoS One. 7:e462642012.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Ishitoya J, Sakuma Y and Tsukuda M:
Eosinophilic chronic rhinosinusitis in Japan. Allergol Int.
59:239–245. 2010. View Article : Google Scholar : PubMed/NCBI
|
35
|
Derycke L, Zhang N, Holtappels G, Dutre T
and Bachert C: IL-17A as a regulator of neutrophil survival in
nasal polyp disease of patients with and without cystic fibrosis. J
Cyst Fibros. 11:193–200. 2012. View Article : Google Scholar
|
36
|
Wen W, Liu W, Zhang L, et al: Increased
neutrophilia in nasal polyps reduces the response to oral
corticosteroid therapy. J Allergy Clin Immunol. 129:1522–1528.
2012. View Article : Google Scholar : PubMed/NCBI
|
37
|
Nikolovski Z, Buzon V, Ribo M, et al:
Thermal unfolding of eosinophil cationic protein/ribonuclease 3: a
nonreversible process. Protein Sci. 15:2816–2827. 2006. View Article : Google Scholar : PubMed/NCBI
|